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6.5 Estimation of

From EQ.8.2 of Ref.2

[ A— ! ! ’
Clp_ CIpWB + CIpH + CIpV

P
W™ “pw ~ B( ) k/B
K

BC), / x depends on BA/ x and Ap

x = (2-D slope of lift curve ) / 2n = 1 (assumed)
BA/ x =0.6 x 6.46/1 = 3.876

Ap= tan ™ (tan Ags / B) = 53°


Free Hand


ForA=0.29,BC|/ x =-0.262 from Fig 8.1 of Ref.2,
Clw =-0.262/0.6 =-0.436

by

! ! S
Cion =0.5(Cy/x),, ?H( b )?

For horizontal tail A/ k¥ = (0.6 x3.64)/1=2.184

(Ap)u =tan™ (tan 35.3/0.6 ) = 49.6°

For A =0.266 : (BC},/ x)n =-0.18 from Fig 8.1 of Ref.2

o 0.18 o 135.07(22.18)2 — - 0.0050

C'),=-05
C)y 0.6 5505 59.64

6.35
59.64

Chy= 2(Zy 10)? Cypy = 2x(—-)? (~0.636) = - 0.0145

Hence, C|, = -0.436 - 0.005- 0.0145 =- 0.458.
Based on area of 511m? this is - 0.494. The value from Ref.3 is — 0.34. The graphs of

Ref.3 show that value of C| does not vary much with Mach number, but the theoretical

method shows a significant dependence on flight Mach number. If M = 0.0 then Fig. 8.1

!

of Ref.2 gives a value of C|,, =-0.32.

6.6 Estimation of C,,
From Eq.(8.6) of Ref.2
Cnp = Can + Can

Where,

. ' Co AC,, AC,,
C ow = " CIpW tana-[-C,p tan“‘(c_)qzo,m C.1+( 5 )0+ ( 5 )OtSf d;

n|
L 05 Op

Now, C! ., = -0.436 from section 6.5

low —



a=4.5° C_=0.616, C; = - 0.458

From Eq.(8.8) of Ref.2

C”P — np
(_)CL=0,M =K (_)CLz oM=0

C, C,
Where,
1 2
K=( A+ 4cos A, AB+§(AB+cosAC,4)tan Ay,

AB+4COSAy, | A ; (A+cosA ) tan 2 A,

where, B = (1 - M? cos® A ¢ ) = (1- 0.8% cos?38.5) = 0.78
For A =6.46, we get K = 0.9238

From Eq.(8.10) of Ref.2

(-1/6)[A+6(A +cosA,,)(

C _ _ =
( np)CL—O,M—O A+ 4cos AC/4

Since, c.g. lies at a.c. of wing, X/C =0 and
(CnP)CL=O,M:0 =- 01526

Hence, (C,y/C)c om = 0.9238 x (- 0.1526) = - 0.141

For A =6.46 and A =0.29, ACp, /6 =0.00021 from Fig.8.2 of Ref.2.
o = flap deflection = 0 (assumed)
6 = -3° (assumed).

Hence, C,,, = 0.436 x tan4.5°- [0.458tan 4.5° +0.141x0.616]+.00021x(-3) = - 0.0896

Z,cosa-l, sina C
b ) yBvV

Cov = (-2/b%) (I, cosa+Z,, sin a)(



=~ %9 242 (—0.636) (28.35c054.5° +6.35sin 4.5°) x(6.35c0s 4. 5° — 28.35sin 4.5°)

=0.0405

Hence, Cnp =-0.0896 + 0.0405 = -0.0491
Based on an area of 511m*, Cy, = - 0.0529
The value of C, from Ref.3 is — 0.044

6.7 Estimation of Cy,

From Eq.(9.1) of Ref.2

Cyr = Cyn

where, C,,, =-(2/b)(l, cosa+Z, sina)C ;4

=-(2/59.64) (28.35 cos4.5° +6.35 sin 4.5°) (- 0.636) = 0.613
6.8 Estimation of C’),
From Eq.(9.3) of Ref.2

Ci = Cwt+ Cly
Where, C|,, =C_ (%)cL:O,M"' (A?r )1—“"(A§|r )0+( A(élr ) Olgs O ;

L QO

o, = flat deflection; it is zero in the present case.

: C,
Now, (Clr/CL)CL:O,M = K1 (C_I)CL:O,M =0

L

A(l-B’) AB+2c0sAy, tan’Ay,
2B(AB + 2cosA,,) AB+4cosA, 8
14 A+ 20087, tan’A,
A+ 4cosA , 8

Where, K, =

For A = 6.44, B =,/(1-M?cos? A,) =0.78, Acu = 38.5"



Substituting, gives Ky = 1.227
From Fig 9.1 of Ref.2 (C|)¢ -om-0=0.345

Hence, c:L(%)CL:O,M =1.227 x 0.345 x 0.616 = 0.261

L

Using Eq. (9.7 ) of Ref.2,

1ﬁ(AC[r) 7 in x 6.46sin38.5
r 57.312 6.46+4c0s38.5

= 0.0134

From Fig.9.2, (C| /6 )= -0.0136

Hence, 6 (AC| /0 ) =- 0.0136 x (-3) = 0.0408

Hence, C!,, = 0.261 + 0.0134 + 0.0408 = 0.315

Cw =-(2/ b%) (1, cos o+ Z, sin ) (Zy cos o — Iy sina)Cypy = 0.0405
Hence, C| =0.315 + 0.0405 = 0.3505

Based on an area of 511m?, C! = 0.378

The value of C| from Ref.3is 0.31

6.9 Estimation of Cy,
From EQ.(9.9) of Ref.2.

Cow = Chw + Chrv

C C
Where, C_,, = (=X) C’ +(=x)C

W Ci L CDO DO
From Fig.9.4 (C,/C*) =0

Cnr / Cpo = - 0.44 from Fig 9.5 of Ref.2
CDO =0.014



Hence, Cw = - 0.44 x 0.014 = - 0.00616
Cwv =(2/ bz) (ly cos a + Z, sina) 2 Cypy
= (2/59.64%) (28.35 cos 4.5 + 6.35 sin 4.5)? x (- 0.636) = - 0.296

Hence, C,, = - 0.00616 - 0.296 = - 0.302
Based on an area of 511m?, C, = - 0.325
From Ref.3,Cy,=-0.34
7 Comparison of estimated values with those in Ref.3

In Table3, the values of derivatives estimated using references Ref.1 and Ref.2
are compared with the values for flexible airplane given in Ref.3. In most of the cases,
agreement is within £ 10 % .The notable exceptions are Cy, ,C,,, C,, Cand C|.

Reference 9 gives (page 4.114) the level of inaccuracy in the estimated values of various
derivatives. The deviations found here are fairly within those limits.

The rather large deviation in the estimated values of Cy, and C|, as compared to

those of Ref.3 appear to be due to inaccurate correction for the effect of Mach number.
The theoretical correction for Cy, is based on Prandtl-Glauert rule as applied to wing.
This gives about 20 % increase in the value of Cr, when Mach number changes from
zero to 0.8. The results for flexible airplane show (Figure on p.220 of Ref.3) that there is
a slight decrease in the value of C., between Mach number zero and 0.8. In a similar

manner, C; depends mainly on the wing. The estimated value of C| at M = 0 would be

- 0.32 which is fairly close to the value for flexible airplane. Here, again (figure on p.225

of Ref.3) C| does not vary appreciably with Mach number for the flexible airplane.



S.No. | Symbol Derivatives
Based onS = 550.5m” |  Based on As given %
andt =10.2m S=511m? by Ref .3 | Deviation
and T =
8.33m

1. CL 0.616 0.66 0.66 -
2. Co 0.0392 0.0422 0.043 -2
3. ClLa 5.44 5.86 5.00 +17.2
4, Cbu 0.446 0.48 0.46 +4.3
5. Crma -0.80 -1.074 -1.03 +4.3
6. Cpu Neglected 0 0.024 -
7. CuLu 0.315 0.346 0.184 +90
8. Crmu -0.174 - 0.2304 0.128 -
9. Cbq Neglected - - -
10. Ciq 8.188 - - -
11. Cmq -20.17 -26.7 -23.9 +11.7
12. Cos Neglected - - -
13. C., 2.31 - - -
14. Cos - 6.87 - 9.06 -6.55 +38.3
15. Cvp - 0.8492 -0.9148 -0.884 4
16. C'is -0.2921 -0.3144 -0.279 +12.7
17. Cnp 0.1746 0.188 0.195 -3.5
18. Cvp -0.1123 - - -
19. Ci, - 0.458 -0.494 -0.34 +45.3
20. Chp -0.0491 - 0.0529 -0.044 +20.0
21. Cvyr -0.613 - - -
22. (o -0.4322 0.466 0.31 +50.0
23. Chr -0.302 -0.325 -0.34 -

8. Stability analysis

TABLE 3: Comparison of estimated derivatives with those in Ref.3

The stability derivatives have been evaluated using the methods prescribed in

Ref.2.The equations of motion using small perturbation theory approach are as follows
(Ref.10, Chapters 4 & 5).




8.1 Equations for longitudinal motion

(%-XU)AU-XWAW‘F(gCOS (O,)AD = X A5+ X5 Ad, 1)
d d . B
-Z,Au+ (I'ZW)E -7, |Aw- (uo+zq)a - gsin® |A0 = Z, AS+Z, AS, (2)
M d d? d)..
- uAu- MW a"’MW Aw + F - 1\/1q a A@ = MBAS + MBT AST (3)

These Equations can be expressed in state space variable form (without control input) as:

X=AX 4)
Au X, X, 0 -9\ Au

Aw | | Z, Z, U, 0 || Aw )
A || M,+M,Z, M, +M,Z, M,+M,U, 0 || Aq

AD 0 0 1 0 JLAB

where,

X 4= - (Copu + 2Cp) QS / mug

Z y=- (CLu +2CL)QS / mug

My = Coy (QST / Ug lyy)

Xw= - (Cpa— C) QS / mug
Zw=-(CLo +Cp) QS /mug

M w = Crna (QST / Ug lyy)

My = Crna (QS T /ug lyy)( T / 2uo)
Mg = Cing (€?/2) QS / Ug lyy

8.2 Equations for lateral motion

(%-YVJAV-YpAer(uO -Y,)Ar-gcos0,Ap = Y;, AS, (6)
Lav+[ 9L Ap - Le d i JAr=1, A5 +L, AG (7)
\% dt p Ixx dt r da a or r
I, d d
-N Av- IiawLNp Ap+ a-Nr Ar = N, AS, +N, AS, (8)

In state space variable form (without control input) these equations appear as:



AV Yu Yp - (UO _Yr) gCOSOO Av

Ap| | L, L, L, 0 Ap )
At N, N, N, 0 |[Ar

A 0 1 0 0 Ao

where ,

Y, =QSbhCyy/ 2mug

Y: = (QS/mug)(b / 2)Cyr
Yp=QSCys/ m

Lp = QSb? C; /(2 Ixx Uo)
L= QSb’C! /(2 lxx Uo)
Ls = QSbCy,/ I

N = QSb*Cpy/ (2 I Up)

N, = QSb*Cu/ (2 Iz, Uo)

Np = QSbCrg/ I,

8.3 Flight condition, mass and moments of inertia

In the present case,

V =up =236.16 m/s

W = 2,852,130 N

m = 290,737 kg

h = 40,000 ft . Hence, p = 0.3014 kg/m®

b=59.74m; T =10.2m; S = 550.5 m?

ly = 24726520 kg m?

lyy = 44969660 kg m’

|, = 67522420 kg m?

ly, = 1317918 kg m?

I’ / 1y 1, = 0.00104 (Neglected)

Q=pV?/2=0.3014 x 236.16 x 236.16 / 2 = 8403.38 N / m?
Hence, QS / muo = 0.06738 , QS/ Ug lyy = 0.000436 , QSb / I,, = 4.086,
QSb / = 11.158, QSh/muy = 4.0183,QSb?/ ugl,, =1.032 |,
QSb?/ ug Iy = 2.818.



8.4. Analysis of longitudinal motion

Using the values of various quantities:

Xuy=-(Cpy+2Cp) QS / mup =- (0 + 2 % 0.0392)0.06738 = - 0.005282
Z,=-(CLy+2CL)QS/ mug=-(0.315+ 2 x 0.616)0.06738 = - 0.1042

My =Cmy (QS/uglyy) T =0.128 x (0.000436 x10.2) =0.0005692

Remark:

The roots of the stability quartic or the eigen values of the stability matrix are sensitive to
the value of Cy,,. Results comparable with the roots in Ref.3 were obtained when Cp,
value given in Ref.3 is used.(See Table 3).

Xw=-(Cpy—CL) QS/ muy =-(0.446 + 0.616)0.06738 = - 0.01145
Zy=-(CLy*+Cp)QS/mug=-(5.44 +0.0392)0.06738 = - 0.3692

M w = Cino (QS/up lyy) T=-0.80 (0.000436 x10.2) = - 0.003558

M = Cing (T?/ 2U0)(QS / Ug lyy) = - 6.87 (10.2)*/ (2 x 236.16) x (0.000436) = - 0.00066
M g = Cmnq (C?/ 2) QS/ Uglyy =-20.17 x 10.2%/ 2 x (0.000436) = - 0.4570

From the

above -0.005282  0.01145 0 - 9.81
quantities, the -0.1042 -0.3692 236.16
stability 0.0006374 -0.003314 - 0.6127 0

matrix for the 0 0 1 0

longitudinal motion is:

The following Eigen values are obtained using MATLAB.
Short Period Mode (ns = i ®s)

-0.4911 +i0.8738, - 0.4911 -1 0.8738

ns = - 0.4911, ws = 0.8738

T2 =In(2)/ | ns | =0.693/0.4911 =1.41s

Period = 21/ ws= 6.28/0.8738 =7.19 s

N1, = Ty / period=1.41/7.19 = 0.196 cycles

Long Period Mode or Phugoid Mode (n, £ i ®))

-0.0025 +i0.0753, - 0.0025 - i 0.0753



Mp = - 0.0025 , @, = 0.0753

T2 =1n(2)/ |mp | = 0.693/0.0025=277.2 s
Period = 21/ wp, = 6.28 / 0.0753 = 83.40's

N1 = Ty / period = 277.2 / 83.40 = 3.32 cycles
Remark:

The approximate analysis of Phugoid mode (Ref.10) gives np and o, as:

Np~=Xul2;0p= J(-Zu g/u,)

In the present case this would give np= - 0.0026 and wp = 0.0667. This cross check is seen
to be roughly satisfied by the roots presented earlier.

8.5 Analysis of lateral motion

Using the values of various quantities yields :

Yp =(QS / mug)(b/2) Cy, = 0.06738 (59.64 /2) (- 0.1123) = - 0.2256

Y= (QS / mug) (b/2)Cy, =0.06738 (59.64/2) (- 0.613) =-1.2316

Yp =QSCys / m =8403.38 x 550.5 (- 0.8492)/ 290737 = -13.512

Lp = (QSh?/ ly Up) (Cl,/2) = (2.818) (-0.458 / 2) = -0.6453

L, = (QSh?/ luo)( C|/2) = (2.818) (0.4322/2) = 0.6089
Ls = (QSb/ Iy Cj, = (11.158) (-0.2921) = - 3.2593

N, =(QSb?/ 1, Ug)(Crp /2) = (1.032)(-0.0491/2) =- 0.02533
N = (QSb% 1,, Ug)(Crr /2) = (1.032) (-0.302/2) = - 0.1558
Ng = (QSb / 1,,)Cyg = (4.086) (0.1746) = 0.7134

The stability matrix for lateral motion is:

-0.05722  -0.00096 -1.0052 0.04154
-3.2593 -0.6453 0.6089 0
0.7134 -0.02533 -0.1558 0
0 1 0 0

The following Eigen values are obtained using MATLAB.
Dutch Roll (ng £ i ®g)

-0.0198 +i10.9162 , - 0.0198 —i 0.9162

Mg =-0.0198 , ®g = 0.9162

T2 =1In(2) /| mg | =0.693/0.0198 = 35.0 s

10



Period = 2n / vg=6.28/0.9162 = 6.85 s

Ny, = T2 / period = 35.0/6.85 = 5.11 cycles

Roll mode

n =-0.8143

Tz =In(2)/|n|=0.693/0.8143 =0.8510s

Spiral mode

n = - 0.00446

T2 =1In(2)/ |n | =0.693/0.00446 = 155.4 s

Remark: Based on Ref.10, the approximate value of the imaginary part of Dutch roll is
\/(NB), which in this case would be 0.8446. This check is also roughly satisfied by the

results presented earlier.

11


Free Hand

Rectangle


