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6.5 Estimation of 
lpC   

 From Eq.8.2 of Ref.2 

lpC = lpWBC  + lpHC  + lpVC  

lpWBC ≈ lpWC  =  
lpC

β( ) /β



 

β lpC  /   depends on βA/   and Λβ 

  = (2-D slope of lift curve ) / 2π ≈ 1 (assumed) 

βA /   = 0.6 × 6.46/1 = 3.876 

Λβ =  tan 
-1

 (tan Λc/4  / β) = 53
0
 

Free Hand
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For λ = 0.29 , β lpC /   = - 0.262 from Fig 8.1 of Ref.2, 

lpWC  = - 0.262 / 0.6 = - 0.436 

2H H
lpH lp H

S b
C =0.5(C / ) ( )

S b
   

For horizontal tail βA /   = (0.6  × 3.64 ) / 1 = 2.184 

(Λβ)H = tan
 -1

 ( tan 35.3 / 0.6 ) = 49.6
0
 

For λ = 0.266 : (β lpC /  )H = - 0.18 from Fig 8.1 of Ref.2 

2

lp H

0.18 135.07 22.18
(C ) = - 0.5 × × ( )

0.6 550.5 59.64
  = - 0.0050 

lpvC = 2(Zv /b)
2
 Cүβv  

26.35
2 ( ) ( 0.636)

59.64
    = - 0.0145 

Hence, lpC  =  - 0.436 -  0.005 -  0.0145  = -  0.458. 

Based on area of 511m
2
 this is - 0.494. The value from Ref.3 is – 0.34. The graphs of 

Ref.3 show that value of lpC does not vary much with Mach number, but the theoretical 

method shows a significant dependence on flight Mach number. If   M = 0.0 then Fig. 8.1 

of Ref.2 gives a value of lpWC  = - 0.32. 

6.6 Estimation of Cnp   

From Eq.(8.6) of Ref.2 

Cnp = CnpW  +  CnpV 

Where, 

L f

f

np np np

npW lpW lp C = 0,M L δ f

L δ f

C ΔC ΔC
C = -  C tanα-[ -C' tan α-( ) C ] +  ( )θ +( )α δ

C θ α δ
  

Now, lpWC = - 0.436 from section 6.5 
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α = 4.5
0
, CL = 0.616, lpC = - 0.458 

From Eq.(8.8) of Ref.2 

np np

CL=0,M CL= 0,M = 0

L L

C C
( ) = K ( )

C C
 

Where, 

2

c/4 c/4
c/4

2c/4
c/4 c/4

1
AB+ (AB+cos Λ ) tan Λ

A + 4cos Λ 2K = ( )
1AB+ 4cos Λ

A + (A +cos Λ ) tan Λ
2

 
 
 
 
 

 

where, B = √ (1 – M
2
 cos

2
 Λ c/4 ) = ( 1- 0.8

2
 cos

2 
38.5 ) = 0.78 

For A = 6.46, we get K = 0.9238 

From Eq.(8.10) of Ref.2 

np CL=0,M=0(C )

2

c/4 c/4
c/4

c/4

tan Λ tan Λx
(-1/6)[A +6(A + cos Λ )( + ]

c A 12=
A + 4cos Λ

 

Since, c.g. lies at a.c. of wing, x /c = 0 and  

Lnp C = 0,M = 0(C ) = - 0.1526  

Hence,  
Lnp L C =0,M(C /C ) = 0.9238 × (- 0.1526) = - 0.141 

For A = 6.46 and λ = 0.29,  ∆Cnp /θ = 0.00021 from Fig.8.2 of Ref.2. 

δf = flap deflection = 0 (assumed) 

θ = -3
0
 (assumed). 

Hence,  
o 0

npWC = 0.436 × tan 4.5 - [0.458tan 4.5 +0.141×0.616]+.00021×(-3)  = - 0.0896 

2 V V
npV V V yβV

Z cosα- sin α
C = (-2/b )( cosα + Z sin α)( )C

b

l
l  
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= 0 0 0 0

2

2
( 0.636)(28.35cos4.5 6.35sin 4.5 ) (6.35cos4. 5 28.35sin 4.5 )

59.64
                 

= 0.0405 

Hence, Cnp  = - 0.0896 + 0.0405  = - 0.0491 

Based on an area of 511m
2
 , Cnp = - 0.0529 

The value of Cnp from Ref.3 is – 0.044 

6.7 Estimation of CYr   

From Eq.(9.1) of Ref.2 

CYr   ≈  CYrv 

where,  Yrv v v YβVC = -(2/b)( cosα+Z sinα)Cl                                              

                    = - (2 / 59.64) ( 28.35  cos 4.5
0
  + 6.35  sin 4.5

0
) ( - 0.636) = 0.613 

6.8 Estimation of C′lr  

From Eq.(9.3) of Ref.2 

lrC  =  lrWC + lrVC  

Where,  lr lr lr lr
lrW L CL=0,M δf f

L δf f

C ΔC ΔC ΔC
C = C ( ) + ( )Γ+( )θ +( )α δ

C Γ θ α δ

   
 ;  

fδ = flat deflection; it is zero in the present case. 

Now, lr
lr L CL = 0,M 1 L = 0,M = 0

L

C
(C /C ) = K ( )C

C


  

Where, 

22

c/4 c/4

c/4 c/4
1 2

c/4 c/4

c/4

AB+ 2cos Λ tan ΛA(1 - B )
1+ +

2B(AB + 2cosΛ ) AB+ 4cos Λ 8
K =

A + 2cosΛ tan Λ
1+ +

A + 4cosΛ 8

 

For A = 6.44, B 
2 2

c/4= (1-M cos Λ ) =0.78 , Λc/4  = 38.5
0
. 
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Substituting, gives K1 =  1.227 

From Fig 9.1 of Ref.2 lr CL= 0,M = 0(C ) =0.345  

Hence,    lr
L CL= 0,M

L

C
C ( )

C


  = 1.227  ×  0.345  ×  0.616  =  0.261 

Using  Eq. (9.7 ) of Ref.2, 

lrC 7 1 π × 6.46sin38.5
( ) = 0.0134

57.312 6.46+4cos38.5


 


 

From Fig.9.2,  (
lrC /θ ) =  - 0.0136 

Hence, θ (∆ lrC /θ ) = - 0.0136 × (-3) = 0.0408 

Hence, lrWC  = 0.261 + 0.0134 + 0.0408 = 0.315 

lrVC  = - (2 / b
2
) ( lv cos α + Zv  sin α) (Zv cos α – lv sinα)CyβV  = 0.0405 

Hence, lrC  = 0.315 + 0.0405 = 0.3505 

Based on an area of 511m
2
, lrC = 0.378 

The value of lrC from Ref.3 is 0.31 

6.9 Estimation of Cnr  

From Eq.(9.9) of Ref.2. 

Cnr  =  C nrW  +  CnrV 

Where,  2nr nr
nrW L D02

L D0

C C
C = ( ) C +( )C

C C
 

From Fig.9.4 
L

2

nr(C /C ) = 0  

Cnr  /  CD0 = - 0.44 from Fig 9.5 of Ref.2 

CD0 = 0.014 
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Hence, CnrW  =  - 0.44 × 0.014 = - 0.00616
 

CnrV  = (2 / b
2
)
 
( lv cos α + Zv sinα)

 2
 Cyβv 

        = (2 / 59.64
2 

) ( 28.35 cos 4.5 + 6.35 sin 4.5)
2
 × ( - 0.636) = - 0.296 

Hence, Cnr = - 0.00616 - 0.296 = - 0.302 

Based on an area of 511m
2
 , Cnr = - 0.325 

From Ref.3 , Cnr = - 0.34 

7 Comparison of estimated values with those in Ref.3 

In Table3, the values of derivatives estimated using references Ref.1 and Ref.2 

are compared with the values for flexible airplane given in Ref.3. In most of the cases, 

agreement is within ± 10 % .The notable exceptions are CLα , muC , mC  lpC and lrC . 

Reference 9 gives (page 4.114) the level of inaccuracy in the estimated values of various 

derivatives. The deviations found here are fairly within those limits.
 

The rather large deviation in the estimated values of CLα and lpC  as compared to 

those of Ref.3 appear to be due to inaccurate correction for the effect of Mach number. 

The theoretical correction for CLα is based on Prandtl-Glauert rule as applied to wing. 

This gives about 20 % increase in the value of CLα when Mach number changes from 

zero to 0.8. The results for flexible airplane show (Figure on p.220 of Ref.3) that there is 

a slight decrease in the value of CLα between Mach number zero and 0.8. In a similar 

manner, lpC  depends mainly on the wing. The estimated value of lpC at M = 0 would be           

- 0.32 which is fairly close to the value for flexible airplane. Here, again (figure on p.225 

of Ref.3) lpC does not vary appreciably with Mach number for the flexible airplane. 
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S.No. Symbol Derivatives 

Based onS = 550.5m
2 

and c  = 10.2 m 

Based on     

S=511m
2
 

and c  = 

8.33m 

As given 

by Ref .3 

% 

Deviation 

1. CL 0.616 0.66 0.66 - 

2. CD 0.0392 0.0422 0.043 -2 

3. CLα 5.44 5.86 5.00 +17.2 

4. CDα 0.446 0.48 0.46 + 4.3 

5. Cmα - 0.80 - 1.074 - 1.03 + 4.3 

6. CDu Neglected 0 0.024 - 

7. CLu 0.315 0.346 0.184 + 90 

8. Cmu - 0.174 - 0.2304 0.128 - 

9. CDq Neglected - - - 

10. CLq 8.188 - - - 

11. Cmq - 20.17 - 26.7 - 23.9 + 11.7 

12. 
DαC  Neglected - - - 

13. 
LC   2.31 - - - 

14. 
mαC  - 6.87 -   9.06 - 6.55 + 38.3 

15. CYβ - 0.8492 - 0.9148 - 0.884 4 

16. C′lβ - 0.2921 - 0.3144 - 0.279 +12.7 

17. Cnβ 0.1746 0.188 0.195 - 3.5 

18. CYp - 0.1123 - - - 

19. 
lpC  - 0.458 - 0.494 - 0.34 +45.3 

20. Cnp - 0.0491 - 0.0529 - 0.044 +20.0 

21. CYr - 0.613 - - - 

22. 
lrC  - 0.4322 0.466 0.31 +50.0 

23. Cnr - 0.302 - 0.325 - 0.34 - 

 

TABLE 3: Comparison of estimated derivatives with those in Ref.3 

8. Stability analysis 

The stability derivatives have been evaluated using the methods prescribed in 

Ref.2.The equations of motion using small perturbation theory approach are as follows 

(Ref.10, Chapters 4 & 5). 
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8.1 Equations for longitudinal motion 

u w 0 δ δT T

d
-X Δu -X Δw +(gcos(θ ))Δθ =  X Δδ+X Δδ

dt

 
 
 

                       (1) 

u w w 0 q δ δT T

d d
-Z Δu + (1-Z ) - Z Δw - (u + Z ) - gsinθ Δθ = Z Δδ+ Z Δδ

dt dt

   
   
   

               (2) 

2

u w w q δ δT T2

d d d
-M Δu - M +M Δw + - M Δθ = M Δδ + M Δδ

dt dt dt

  
  

   
               (3) 

These Equations can be expressed in state space variable form (without control input) as: 

X= AX                                                                                   (4) 

 

u w

u w 0

u w u w w w q w 0

X X 0 -gΔu Δu

Z Z u 0Δw Δw
=

Δq ΔqM +M Z M +M Z M +M U 0

ΔθΔθ 0 0 1 0

    
    
    
    
       

    

         (5) 

where,  

X u = - (CDu + 2CD ) QS / mu0 

Z u = - (CLu + 2CL )QS / mu0 

M u = Cmu (QS c  / u0 Iyy) 

X w = - (CDα – CL ) QS / mu0 

Z w = - (CL + CD ) QS / mu0 

M w = Cmα (QS c  / u0 Iyy) 

Mẃ  = Cmά (QS c /u0 Iyy)( c / 2u0) 

Mq = Cmq (
2c /2) QS / u0 Iyy 

8.2 Equations for lateral motion 

v p 0 r 0 δr r

d
-Y Δv-Y Δp+(u -Y )Δr -gcosθ Δφ = Y Δδ

dt

 
 
 

                  (6) 

xz
v p r δa a δr r

xx

Id d
-L Δv+ - L Δp - +L Δr = L Δδ +L Δδ

dt I dt

  
  

   
                    (7) 

xz
v p r δα α δr r

zz

I d d
- N Δv- + N Δp+ - N Δr = N Δδ +N Δδ

I dt dt

   
   

  
                      (8) 

In state space variable form (without control input) these equations appear as: 
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u p 0 r 0

v p r

v p r

Y Y -(u -Y ) gcosθΔv Δv

L L L 0Δp Δp
=

Δr ΔrN N N 0

Δφ Δφ0 1 0 0

    
    
    
    
    
     

                       (9) 

where ,  

Yp = QSbCyp / 2mu0 

Yr = (QS/mu0)(b / 2)Cyr 

Y = QSCy / m 

Lp = QSb
2 

lpC /( 2 Ixx u0) 

L r = QSb
2

lrC / (2 Ixx u0) 

L = QSb lβC / Ixx 

N p = QSb
2
Cnp/ (2 Izz u0) 

N r = QSb
2
Cnr/ (2 Izz u0) 

N = QSbCn / Izz 

8.3 Flight condition, mass and moments of inertia 

In the present case, 

V = u0  = 236.16 m/s 

W = 2,852,130 N 

m =   290,737 kg 

h = 40,000 ft . Hence, ρ = 0.3014 kg/m
3 

b = 59.74 m ; c  = 10.2 m ; S = 550.5 m
2
 

Ixx   = 24726520 kg m
2

 

Iyy  = 44969660 kg m
2

 

Izz  = 67522420 kg m
2

 

Ixz  = 1317918 kg m
2

 

Ixz
2
 / Ixx Izz = 0.00104  (Neglected) 

Q = ρV
2 

/ 2 = 0.3014 × 236.16 × 236.16 / 2 = 8403.38 N / m
2
 

Hence, QS / mu0 = 0.06738 , QS/ u0 Iyy = 0.000436 , QSb / Izz  = 4.086 , 

QSb / Ixx = 11.158 , QSb/mu0 =  4.0183 , QSb
2 
/ u0 Izz  =1.032  , 

QSb
2 

/ u0 Ixx  = 2.818. 
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8.4. Analysis of longitudinal motion 

Using the values of various quantities: 

X u = - (CDu + 2CD ) QS / mu0 = - (0 + 2 × 0.0392)0.06738 = - 0.005282 

Z u = - (CLu + 2CL )QS / mu0 = - (0.315 + 2 × 0.616)0.06738 = - 0.1042 

M u = Cmu (QS / u0 Iyy) c  = 0.128 × (0.000436 ×10.2)  = 0.0005692 

Remark:  

The roots of the stability quartic or the eigen values of the stability matrix are sensitive to 

the value of Cmu. Results comparable with the roots in Ref.3 were obtained when Cmu 

value given in Ref.3 is used.(See Table 3). 

X w = - (CDα – CL ) QS / mu0  = -(0.446 + 0.616)0.06738  = - 0.01145 

Z w = - (CL + CD )QS / mu0 = - (5.44 + 0.0392)0.06738 = - 0.3692 

M w = Cm (QS/u0 Iyy) c = - 0.80  (0.000436 ×10.2) = - 0.003558 

M ẃ = Cmά (
2c / 2u0)(QS / u0 Iyy) = - 6.87 (10.2)

2 
/ (2 × 236.16) × (0.000436) = - 0.00066 

M q = Cmq (
2c / 2)  QS / u0 Iyy = - 20.17 × 10.2

2
/ 2 × (0.000436)  = - 0.4570 

From the 

above 

quantities, the 

stability 

matrix for the 

longitudinal motion is: 

 

 

The following Eigen values are obtained using MATLAB. 

Short Period Mode (ηs ± i ωs) 

- 0.4911 + i 0.8738, - 0.4911 - i 0.8738 

ηs = - 0.4911, ωs = 0.8738 

T1/2 = ln(2)/ | ηs | = 0.693/0.4911  = 1.41 s 

Period = 2π/ ωs = 6.28/0.8738 = 7.19 s 

N1/2 = T1/2 / period= 1.41/7.19 = 0.196 cycles 

Long Period Mode or Phugoid Mode (ηp ± i ωp) 

- 0.0025  + i 0.0753 , - 0.0025 - i 0.0753  

-0.005282 0.01145 0 - 9.81

-0.1042 -0.3692 236.16 0

0.0006374 -0.003314 - 0.6127 0

0 0 1 0
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ηp = - 0.0025 , ωp = 0.0753 

T1/2 = ln(2)/ | ηp | = 0.693 / 0.0025= 277.2 s 

Period = 2π / ωp = 6.28 / 0.0753 =  83.40 s 

N1/2 = T1/2 / period = 277.2 / 83.40 = 3.32 cycles 

Remark:  

The approximate analysis of Phugoid mode (Ref.10) gives ηp and ωp as: 

ηp ≈ X u / 2 ; ωp ≈ u 0( -Z  g / u )  

In the present case this would give ηp ≈ - 0.0026 and ωp ≈ 0.0667. This cross check is seen 

to be roughly satisfied by the roots presented earlier. 

8.5 Analysis of lateral motion 

Using the values of various quantities yields : 

Yp =(QS / mu0)(b/2) Cyp = 0.06738  (59.64 / 2) (- 0.1123) = - 0.2256 

Yr = (QS / mu0) (b/2)Cyr   = 0.06738  (59.64 / 2) (- 0.613) = - 1.2316 

Y = QSCy  / m  = 8403.38 x 550.5 (- 0.8492)/ 290737 = -13.512 

Lp = (QSb
2 

/ Ixx u0)
 
( lpC /2) = (2.818) (-0.458 / 2) = -0.6453 

L r = (QSb
2 

/ Ixxu0)( lrC /2)  = (2.818) (0.4322 / 2)  = 0.6089 

L = (QSb / Ixx) lβC  = (11.158) (-0.2921) = - 3.2593 

Np =(QSb
2 

/ Izz u0)(Cnp /2)  = (1.032)(-0.0491 / 2)  = - 0.02533 

N r = (QSb
2
/ Izz u0)(Cnr /2) = (1.032)  (-0.302 / 2) = - 0.1558 

N = (QSb / Izz)Cn  = (4.086) (0.1746) = 0.7134 

The stability matrix for lateral motion is: 

-0.05722 -0.00096 -1.0052 0.04154

-3.2593 -0.6453 0.6089 0

0.7134 -0.02533 -0.1558 0

0 1 0 0

 

The following Eigen values are obtained using MATLAB. 

Dutch Roll (ηd ± i ωd) 

- 0.0198 + i 0.9162 , - 0.0198 – i 0.9162 

ηd = - 0.0198 , ωd = 0.9162 

T1/2 = ln(2) / | ηd | = 0.693/0.0198 = 35.0 s 
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Period = 2π / ωd = 6.28/0.9162 = 6.85 s 

N1/2 = T1/2 / period = 35.0/6.85 = 5.11 cycles 

Roll mode 

η = - 0.8143 

T1/2 = ln (2) / | η |= 0.693 / 0.8143 = 0.8510 s 

Spiral mode 

η = - 0.00446 

T1/2 = ln(2)/ | η | = 0.693/0.00446 = 155.4 s 

Remark: Based on Ref.10, the approximate value of the imaginary part of Dutch roll is 

√(Nβ), which in this case would be  0.8446. This check is also roughly satisfied by the 

results presented earlier. 
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