Appendix C

Drag polar, stability derivatives and characteristic roots of a

jet airplane - 3

Lecture 39

Topics

- 5.5 Estimation of C_{Lu}
- 5.6 Estimation of C_{mu}
- 5.7 Estimation of C_{Dq}
- 5.8 Estimation of C_{Lq}
- 5.9 Estimation of C_{mq}
- 5.10 Estimation of $C_{D\dot{\alpha}}$
- 5.11Estimation of $C_{L\dot{\alpha}}$
- 5.12 Estimation of $C_{m\dot{\alpha}}$

6. Estimation of lateral stability derivatives

6.1 Estimation of $C_{\gamma\beta}$ 6.2 Estimation of $C'_{1\beta}$ 6.3 Estimation of $C_{n\beta}$ 6.4 Estimation of $C_{\gamma p}$

5.5 Estimation of C_{Lu}

From Eq.(4.2) of Ref.2, $C_{Lu} = \frac{M^2}{1 - M^2} C_L = \frac{0.8^2}{1 - 0.8^2} \times 0.616 = 1.17$

Remark:

According to Ref. 9, p.4-68, this formula for C_{Lu} is valid only for low values of C_L . The value of C_{Lu} lies between -0.2 to 0.6. From figure on p.222 of Ref.3 one finds $C_{LM} = 0.23$ Hence, $C_{Lu} = M \times C_{LM} = 0.8 \times 0.23 = 0.184$.

An alternate procedure for C_{LM} is as follows (Ref.12, chapter 4, see also Ref..13, section 7.11.2).

$$\begin{split} &C_L = C_{L\alpha} \left(\alpha - \alpha_{oLW} \right) \text{; or } C_{LM} = C_{L\alpha M} \left(\alpha - \alpha_{0LW} \right) \\ &\text{or } C_{Lu} = M \ C_{L\alpha M} \left(\alpha - \alpha_{0LW} \right) \text{; } \quad \alpha_{0LW} = \text{Zero lift angle of wing} \end{split}$$

In a manner similar to the calculation of $C_{L\alpha}$ at M = 0.8, the values of $C_{L\alpha}$ at M = 0.82 and M = 0.78 are obtained as 4.9645 and 4.8391 respectively. Then, $C_{L\alpha M} = (4.9645 - 4.8391) / (0.82 - 0.78) = 3.135$ $(\alpha - \alpha_{0LW}) = C_L / a_w = 0.616 / 4.9$ Hence, $C_{Lu} = 0.8 \times 3.135 \times 0.616 / 4.9 = 0.315$ Based on the area of 511m² this becomes:

$$C_{Lu} = 0.315 \times \frac{550.5}{511} = 0.346$$

Remarks:

i) Reference 11 volume VI, p.376 gives:

$$C_{Lu} = \{ M_1^2 \times (\cos \Lambda_{c/4})^2 \times C_{L1} \} / \{ 1 - M_1^2 (\cos \Lambda_{c/4})^2 \}$$

Where, $M_1 \& C_{L1}$ are the Mach number and lift coefficient in chosen flight condition. In the present case:

$$C_{1,n} = \{0.8^{2} \times (\cos 38.5)^{2} \times 0.616\} / \{1 - 0.8^{2} (\cos 38.5)^{2}\} = 0.3971$$

ii) For stability analysis of longitudinal motion, in section 8.4, $C_{Lu} = 0.315$ is used.

5.6 Estimation of C_{mu}

From Eq.(4.3) of Ref.2

$$C_{mu} = -C_{L} \frac{\partial \bar{X}_{acw}}{\partial M}$$

To calculate this quantity, \overline{X}_{acW} must be obtained at Mach numbers close to the flight Mach number. Adopting the procedure outlined in section 5.3, the following values are obtained.

М	0.78	0.82
$\overline{X}_{_{acW}}$	0.3243	0.3356

Hence, $\partial \overline{X}_{acw} / \partial M = (0.3356 - 0.3243) / 0.04 = 0.2825$ Hence, $C_{mu} = -0.616 \times 0.2825 = -0.174$ Based on the area of 511 m² and reference chord of 8.33 m $C_{mu} = -0.1740 \times 550.5 \times 10.2 / (511 \times 8.33) = -0.2304$ Alternatively (Ref.13, section 7.11.3), $C_{mu} = M C_{mM}$ From figure on p.222 of R.3 $C_{mM} = 0.16$, consequently

 $C_{mu} = 0.8 \times 0.16 = 0.128.$

It is seen that the calculated value of C_{mu} (i.e. -0.2304) and that given in Ref.3 (i.e. 0.128) are not only different but have different signs. It may be pointed out that from Ref.3 it is noticed that C_{mM} , depends on Mach number and also on C_L . Refer also to remark in section 8.4.

5.7 Estimation of C_{Dq}

It is generally small and hence neglected.

5.8 Estimation of C_{Lq}

From Eq. (5.1) of Ref.2

$$C_{Lq} = C_{Lqw} + C_{LqH}$$

$$(C_{Lqw})_{M} = (\frac{A + 2\cos\Lambda_{c/4}}{AB + 2\cos\Lambda_{c/4}})(C_{Lqw})_{M=0}$$

$$(C_{Lqw})_{M=0} = (\frac{1}{2} + \frac{2X_{W}}{\overline{c}})(C_{Law})_{M=0}$$

where, X_W is the distance between c.g and a.c. In the present case it is zero. Noting that $(C_{Law})_{M=0}$ is 4.005, gives:

$$(C_{Lqw})_{M=0} = (\frac{1}{2} + 0) 4.005 = 2.003$$

A = aspect ratio

$$\mathbf{B} = \sqrt{\{1 - \mathbf{M}^2 \cos^2 \Lambda_{c/4}\}} = \sqrt{\{1 - 0.8^2 \cos^2 38.5\}} = 0.78$$

Consequently, $(C_{Lqw})_{M} = \frac{6.46 + 2\cos 38.5}{6.46 \times 0.78 + 2\cos 38.5} \times 2.003 = 2.447$

$$(C_{LqH})_M = 2C_{L\alpha H} \eta_H \overline{V}_H; \quad \overline{V}_H = \frac{X_H}{\overline{c}} \frac{S_H}{S}$$

$$\begin{split} X_{H} &= \text{distance from c.g to a.c of tail} = 61.75 - 31.41 = 30.34 \ ; X_{H} / \ \overline{c} = 2.975 \\ \overline{V}_{H} &= \frac{30.34}{10.2} \times \frac{135.08}{550.5} = 0.731 \\ (C_{LqH})_{M} &= 2 \times 4.135 \times 0.95 \times 0.731 = 5.741 \\ C_{Lq} &= 2.447 + 5.741 = 8.188 \end{split}$$

5.9 Estimation of C_{mq}

From Eq.(5.6) of Ref.2

$$C_{mq} = C_{mqW} + C_{mqH}$$

$$(C_{mqW})_{M} = (C_{mqW})_{M=0} \left[\frac{\frac{A^{3} \tan^{2} \Lambda_{c/4}}{AB + 6 \cos \Lambda_{c/4}} + \frac{3}{B}}{\frac{A^{3} \tan^{2} \Lambda_{c/4}}{A + 6 \cos \Lambda_{c/4}} + 3} \right]$$

$$(C_{mqW})_{M=0} = -KC_{laW} \cos \Lambda_{c/4} \left(\frac{A \left(2 \left(\frac{\overline{X}_{W}}{\overline{c}} \right)^{2} + \frac{1}{2} \left(\frac{\overline{X}_{W}}{\overline{c}} \right) \right)}{A + 2 \cos \Lambda_{c/4}} + \frac{1}{24} \frac{A^{3} \tan^{2} \Lambda_{c/4}}{A + 6 \cos \Lambda_{c/4}} + \frac{1}{8} \right)$$

From Fig 5.1 of Ref.2, K = 0.705 for A = 6.46, $C_{l\alpha W} = 2\pi = 6.28$ and as evaluated in section 5.8, and B = 0.78.

$$(C_{mqW})_{M=0} = -0.705 \times 6.28 \cos 38.5 \{0 + 1/24 \frac{6.46^3 \tan^2 38.5}{6.46 + 6\cos 38.5} + 1/8\} = -2.641$$

$$(C_{mqW})_{M} = -2.641 \left[\frac{\frac{6.46^{3} \tan^{2} 38.5}{6.46 \times 0.78 + 6 \times \cos 38.5} + \frac{3}{0.78}}{\frac{6.46^{3} \tan^{2} 38.5}{6.46 + 6 \times \cos 38.5} + 3} \right] = -3.086$$
$$C_{mqH} = -\frac{2C_{L\alpha H} \eta_{H} \bar{V}_{H} X_{H}}{\bar{c}} = -2 \times 4.135 \times 0.95 \times 0.731 \times 2.975 = -17.09$$

Hence, $C_{mq} = -17.09 - 3.086 = -20.17$

Based on an area of 511m^2 and $\overline{c} = 8.33 \text{ m C}_{\text{mq}}$ is :

$$C_{mq} = -20.17 \times \frac{550.5}{511} \times \frac{10.2}{8.33} = -26.7$$

From p.221 of Ref.3 C_{mq} = -23.9. The estimated value is higher perhaps because the value of $C_{L\alpha}$ given by theory is higher.

5.10 Estimation of $C_{D\dot{\alpha}}$

This is taken as zero.

5.11 Estimation of $C_{L\dot{\alpha}}$

From Eq.(6.1) of Ref.2.

 $C_{{\rm L}\dot{\alpha}}=C_{{\rm L}\dot{\alpha}{\rm W}}+C_{{\rm L}\dot{\alpha}{\rm H}}$

Expressions are given in Ref.2 for $C_{L\dot{\alpha}W}$ and $C_{L\dot{\alpha}H}$. However, from reference 11 vol.VI p. 387.

$$C_{L\dot{\alpha}} \approx -C_{m\dot{\alpha}} \left(\overline{c} / X_{H} \right)$$

Hence, $\,C_{_{L\dot\alpha}}\,$ is estimated after evaluating $\,C_{_{m\dot\alpha}}\,.$

5.12 Estimation of $C_{m\dot{\alpha}}$

From Eq.(6.4) of Ref.2

$$C_{m\dot{\alpha}} = C_{m\dot{\alpha}W} + C_{m\dot{\alpha}H}$$

 $C_{m\dot{\alpha}W} = 0$
 $C_{m\dot{\alpha}H} = -2 C_{L\alpha H} \eta_H \overline{V}_H (X_H / \overline{c}) (d\epsilon/d\alpha)$
 $= -2 \times 4.135 \times 0.95 \times 0.731 \times 2.975 \times 0.432 = -6.87$
Hence, $C_{m\dot{\alpha}} = -6.87$

The value of $C_{m\dot{\alpha}}$ based on the area of $511m^2$ and \overline{c} of 8.33m is :

$$C_{m\dot{\alpha}} = -6.87 \times \frac{550.5}{511} \times \frac{10.2}{8.33} = -9.06$$

Remarks:

- i) Value of $C_{m\dot{\alpha}}$ given in Ref.3 is 6.55.
- ii) Value of $C_{L\dot{\alpha}}$ is : -(- 6.87 / 2.975) = 2.31

6. Estimation of lateral stability derivatives

These derivatives can be classified as angle of sideslip derivatives $C_{Y\beta}$, $C'_{1\beta}$, $C_{n\beta}$; roll rate derivatives C_{Yp} , C'_{1p} , C_{np} and yaw rate derivatives C_{Yr} , C'_{1r} , C_{nr}

6.1 Estimation of C_{Yβ}

From Eq. (7.1) of Ref.2 $C_{Y\beta} = C_{Y\betaW} + C_{Y\betaB} + C_{Y\betaV}$ $C_{Y\betaW} = -0.0001 \ \Gamma \text{ x 57.3}$ $\Gamma = 7^{0}$, hence $C_{Y\betaW} = -0.0001 \times 7 \times 57.3 = -0.0401 \text{ rad}^{-1}$ $C_{\gamma\beta B} = -2K_i (S_0 / S)$

 K_i is given in Fig 7.1 of Ref.2. It depends on the position of wing on fuselage and on (2 z_w/d)

 $_{Zw}$ = distance from body centre to c /4 of exposed wing root chord = 3.5 m (estimated from Fig.1).

d = maximum diameter at wing body junction = 7.2 m

Hence, $2z_w / d = 3.5 \times 2 / 7.2 = 0.972$

 $K_i = 1.48$ from Fig 7.1 of Ref.2.

 $S_0 = cross$ sectional area of the fuselage at the point where dS/dx is maximum. This is estimated to occur at 36.5 m from nose. At this location S_0 is 32.2 m².

$$C_{_{Y\beta B}} = -2 \times 1.48 \frac{32.2}{550.5} = -0.1731$$

 $C_{Y\beta V}$:

$$C_{_{Y\beta V}} = -k C_{_{L\alpha V}} (1 + \frac{d\sigma}{d\beta}) \eta_{_{V}} \frac{S_{_{V}}}{S}$$

The factor k, given in Fig.7.3 of R.2, depends on $(b_V/2r_1)$. See section 2.5 for definition of 'r₁'.Here $b_V/2r_1 = 11.6/5.0 = 2.32$. Hence, k = 0.82

 $C_{L\alpha\nu}$: It depends on the effective aspect ratio of the vertical tail (A_{Veff}).

$$A_{Veff} = \frac{A_{VB}}{A_{V}} A_{V} \{ 1 + K_{H} \ (\frac{A_{VHB}}{A_{VB}} - 1) \}$$

From section 2.5, $A_V = 1.38$, $\lambda_V = 0.296$.

From Fig.7.5 of Ref.2

$$\frac{A_{\rm VB}}{A_{\rm V}} = 1.58$$

 $\frac{A_{_{VHB}}}{A_{_{VB}}}$ depends on z_{H} / $b_{v}\,$. z_{H} is defined in Fig 7.6 of Ref.2.

It is taken as zero because a.c. of the horizontal tail lies below the root chord of the vertical tail. X is the distance of the a.c. of the horizontal tail from the leading edge of the vertical tail root chord = 61.75 - 52.0 = 9.75 m.

Hence, X / $c_v = 9.75/13 = 0.75$; C_v is taken equal to $(c_r)_v$

From Fig.7.6 of Ref.2

$$\frac{A_{_{VHB}}}{A_{_{VB}}} = 1.29$$

 $S_H / S_V = 135.08 / 97.73 = 1.372$. From Fig.7.7 of Ref.2, $K_H = 1.03$

Then, $A_{Veff} = 1.58 \times 1.38 [1 + 1.03 (1.29 - 1)] = 2.83$

The term $C_{L\alpha\nu}$ is calculated from A_{Veff} in the same manner like that for a wing of this aspect ratio. Using Eq.(3.8) of Ref.2, $C_{L\alpha\nu} = 3.40$.

From Eq.(7.5) of Ref.2

$$\{1 + (d\sigma/d\beta)\}\eta_{V} = 0.724 + 3.06\frac{97.73/550.5}{1 + \cos 39.8} + 0.4(\frac{3.5}{7.2}) + 0.009 \times 6.46 = 1.284$$

Hence, $C_{Y\beta V} = -0.82 \times 3.40 \times 1.284 \times (97.73 / 550.5) = -0.636$

And

 $C_{Y\beta} = -0.636 - 0.1731 - 0.0401 = -0.8492$

Based on an area of 511m^2 , $C_{Y\beta} = .8492 \times (550.5 \ / \ 511) = - \ 0.9148$

From Ref.3 the value of $C_{Y\beta}$ is - 0.884.

6.2 Estimation of C'₁₆

From Eq.(7.8) of Ref.2

$$C_{1\beta}' = C_{1\beta WB}' + C_{1\beta H}' + C_{1\beta V}'$$

Now,

$$\begin{split} C_{1\beta WB}' &= 57.3 \left[\{ C_{LWB} \left(\frac{C_{1\beta}'}{C_L} \right)_{\Lambda_{C2}} K_{M\Lambda} K_f + \left(\frac{C_{1\beta}'}{C_L} \right)_A \} + \Gamma \{ \frac{C_{1\beta}'}{\Gamma} K_{M\Gamma} + \frac{\Delta C_{1\beta}'}{\Gamma} \} \\ &+ \left(\Delta C_{1\beta}' \right)_{ZW} + \theta \tan \Lambda_{c/4} \left(\frac{\Delta C_{1\beta}'}{\theta \tan \Lambda_{c/4}} \right) \right] \end{split}$$

 $C_{LWB}\approx C_L=0.616$

For A = 6.46, λ = 0.29 and $\Lambda_{C/2}$ = 35.0⁰, from Fig 7.11 of Ref.2

$$(\frac{C'_{I\beta}}{C_{L}}) \Lambda_{C/2} = -0.0029$$

M cos $\Lambda_{c/2} = 0.8 \cos 35 = 0.655$; $\frac{A}{\cos \Lambda_{c/2}} = \frac{6.46}{\cos 35} = 7.86$

From Fig 7.12 of Ref.2, $K_{M\Lambda} = 1.23$.

The parameter K_f depends on l_f / b. The length l_f is shown in Fig. 7.13 of Ref.2. Based on Fig 2 of this appendix, $l_f = 45.16$ m. l_f / b = 45.16 /59.64 = 0.757. From Fig.7.13 of Ref.2, K_f = 0.884 From Fig 7.14 of Ref.2, (C'_{1β}/C_L)_A = - 0.0002 For $\Lambda_{c/2} = 35^0$ and $\lambda = 0.29$, from Fig 7.15, (C'_{1β} / Γ) = - 0.0001825 From Fig 7.16, K_{MΓ} = 1.15 From Eq.(7.10) of Ref.2 $\frac{\Delta C'_{Iβ}}{\Gamma} = -0.0005 \sqrt{A} (d/b)^2$ $d = \sqrt{(average fuselage cross sectional area / 0.7854)} = 6.41m$ Hence, $\Delta C'_{1β} / \Gamma = -0.0005 \times \sqrt{6.46} (6.41/59.64)^2 = -0.0000146$ From Eq.(7.12) of Ref.2

$$(\Delta C'_{1\beta})_{ZW} = -\frac{1.2\sqrt{A}}{57.3} (\frac{Z_W}{b})(\frac{2d}{b}) = -\frac{1.2 \times \sqrt{6.46}}{57.3} (\frac{3.5}{59.64})(\frac{2 \times 6.41}{59.64}) = -0.000671$$

From Fig 7.17 of Ref.2

$$\frac{\Delta C'_{I\beta}}{\theta tan \Lambda_{c/4}} = - 0.000031$$

The quantity θ is the wing twist which is assumed to be equal to -3^{0}

Now, $C'_{1BWB} = 57.3 \ [0.616 \ (-0.0029 \times 1.23 \times 0.884 \ -0.0002)$

$$+7(-0.0001825 \times 1.15 - 0.0000146) - 0.000671 + (-3)(-0.000031) \tan 38.5] = -0.2431$$

From Eq.(7.13) of Ref.2 : $C'_{l\beta H} = C'_{l\beta HB} \frac{S_H b_H}{S b}$

 $C'_{I\beta HB}$ can be evaluated in the same manner as $C'_{I\beta WB}$. It is simply taken equal to $C'_{I\beta WB}$ i.e $C'_{I\beta HB} = -0.2431$.

Then,

$$C'_{1\beta H} = -\frac{0.2431 \times 135.07 \times 22.17}{550.5 \times 59.64} = -0.0222$$

From Eq.(7.14) of Ref.2

$$C'_{1\beta V} = C_{Y\beta V} \left(\frac{Z_V \cos \alpha - l_V \sin \alpha}{b} \right)$$

 l_v = distance between c.g and the a.c of vertical tail

Reference 2 shows the distances l_v and Z_v in Fig.7.18. However, it does not give a procedure to obtain the location of the aerodynamic centre of vertical tail from the leading edge of its root chord (the distance $\frac{X'_{ac}}{c_r}$ in section 5.3 of this appendix). Hence,

the procedure to obtain $\frac{X_{ac}}{c_r}$ for the wing is adopted considering the vertical tail as a

hypothetical wing. For this purpose, the span of a hypothetical wing (b_h) is taken as 2 b_v or $b_H = 2 \times 11.6 = 23.2 \text{ m}$. The root chord , tip chord and taper ratio of the hypothetical wing are: $(c_r)_h = (c_r)_V = 13.00 \text{ m}$, and $(c_t)_h = (c_t)_V = 3.85 \text{ m}$, and

 $\lambda_h = \lambda_V = 0.297$. This hypothetical wing thus has an area (S_h) of (23.2/2) (13 + 3.85) =

195.46 m² and an aspect ratio (A_h) of $23.2^2/195.46 = 2.75$. Hence, the parameters A_h tan Λ_{LE} and $\beta/\tan \Lambda_{LE}$ are 2.75 tan 46.26 and 0.6 / tan 26.26 or 2.878 and 0.574.

From Fig 3.9 of Ref.2, $\frac{X'_{ac}}{(c_r)}$ for the hypothetical wing is 0.597.

Consequently, for the vertical tail, $X'_{ac} = 0.597 \times 13 = 7.76$ m.

Since, leading edge of the vertical tail is at 52 m from the nose, the location of a.c. from nose is (52 + 7.76) m or 59.76 m

Noting that the c.g. of the airplane is at 31.41 m from nose, gives :

 $l_{\rm v} = 59.76 - 31.41 = 28.35$ m.

 Z_v = distance of vertical tail a.c above c.g. Assuming c.g to lie on the centre line of the cylindrical portion of the fuselage this is = 6.35 m

 α = angle of attack. Assuming α_{0L} = -2⁰ one gets :

$$\mathbf{C}_{\mathrm{L}} = \mathbf{C}_{\mathrm{L}\alpha} \left(\alpha - \alpha_{\mathrm{0L}} \right)$$

or $0.616 = (5.44 / 57.3) (\alpha + 2)$

Hence, $\alpha = 4.5^{\circ}$

Note : The value of α given in Ref.3 is 4⁰ Then,

$$C'_{1\beta V} = -6.36 \ \frac{6.35 \cos 4.5^{\circ} - 28.35 \sin 4.5^{\circ}}{59.64} = -0.042$$

Hence,

 $C'_{1\beta} = -0.2279 - 0.0222 - 0.042 = -0.2921$

With reference to wing area of $511m^2$, $C'_{l\beta} = -0.3144$. The value from figures of Ref.3 is -0.279

6.3 Estimation of $C_{n\beta}$

From Eq.(7.13) of Ref.2

 $C_{n\beta} = C_{n\beta W} + C_{n\beta B} + C_{n\beta v}$

 $C_{n\beta W} = 0$ as angle of attack is not high

$$C_{n\beta B} = -57.3 \, K_{\rm N} \, K_{\rm R1} \frac{S_{\rm BS}}{S} \, \frac{l_{\rm B}}{b}$$

The quantity K_N is shown in Fig.7.19 of Ref.2. It depends on three parameters namely

 $l_{\rm B}^2$ / S_{BS} , $\sqrt{(h_1 / h_2)}$ and h /W. $l_{\rm B} = 68.63$ m , S_{BS} = body side area = 416 m²

 $X_m = c.g$ location from nose = 31.41m

 $X_{\rm m}$ / $l_{\rm B}$ = 31.41 / 68.63 = 0.4576

h₁ and h₂ are fuselage heights at $l_{\rm B}$ / 4 and 3 $l_{\rm B}$ / 4. From Fig. 3 these are 7.8 m and 5.8 m. Hence, $\sqrt{h_1 / h_2} = \sqrt{7.8 / 5.8} = 1.16$

h = maximum height of fuselage = 8.4 m

W= body maximum width = 6.41mHence, h / W = 8.4/6.41 = 1.31 l_B^2 / S_{BS} = $68.63^2 / 416 = 11.32$ Then, from Fig 7.19 of Ref.2 , K_N = 0.00124 K_{Rl} depends on fuselage Reynolds number. Which is 258.1 \times 10 $^6.$ From Fig 7.20 of Ref.2, $~K_{Rl}$ = 2.14

Consequently, $C_{n\beta B} = -57.3 \times 0.00124 \times 2.14 \times (416/550.5) \times \frac{68.63}{59.64} = -0.1321$

$$C_{n\beta V} = -C_{Y\beta V} \left(\frac{l_V \cos \alpha + Z_V \sin \alpha}{b}\right)$$
$$= 0.636 \left(\frac{28.35 \cos 4.5^0 + 6.35 \sin 4.5^0}{59.64}\right) = 0.3067$$

Hence, $C_{n\beta}$ = - 0.1321 + 0.3067 = 0.1746

Based on an area of 511m^2 this would be = 0.188

From Ref.3 the value of $C_{n\beta}\,=0.195$

6.4 Estimation of C_{yp}

$$C_{YP} \approx C_{YPV} = 2\left(\frac{Z_V \cos \alpha - l_V \sin \alpha}{b}\right) C_{Y\beta V}$$
$$= 2\left(\frac{6.35 \cos 4.5^0 - 28.35 \sin 4.5^0}{59.64}\right) \times (-0.636) = -0.0841$$