Appendix C

Drag polar, stability derivatives and characteristic roots of a

jet airplane - 3
Lecture 39

Topics

5.5 Estimation of C_{Lu}
5.6 Estimation of C_{mu}
5.7 Estimation of C_{Dq}
5.8 Estimation of C_{Lq}
5.9 Estimation of C_{mq}
5.10 Estimation of $\mathrm{C}_{\mathrm{D} \dot{\alpha}}$
5.11Estimation of $\mathrm{C}_{\mathrm{L} \dot{\alpha}}$
5.12 Estimation of $\mathrm{C}_{\mathrm{m} \dot{\alpha}}$

6. Estimation of lateral stability derivatives

6.1 Estimation of $\mathrm{C}_{\mathrm{y} \beta}$
6.2 Estimation of $\mathrm{C}_{1 \beta}^{\prime}$
6.3 Estimation of $\mathrm{C}_{\mathrm{n} \beta}$
6.4 Estimation of C_{Yp}
5.5 Estimation of C_{Lu}

From Eq.(4.2) of Ref.2, $\mathrm{C}_{\mathrm{Lu}}=\frac{\mathrm{M}^{2}}{1-\mathrm{M}^{2}} \mathrm{C}_{\mathrm{L}}=\frac{0.8^{2}}{1-0.8^{2}} \times 0.616=1.17$

Remark:

According to Ref. 9, p.4-68, this formula for $C_{L u}$ is valid only for low values of C_{L}. The value of C_{Lu} lies between - 0.2 to 0.6 . From figure on p .222 of Ref. 3 one finds $\mathrm{C}_{\mathrm{LM}}=0.23$ Hence, $\mathrm{C}_{\mathrm{Lu}}=\mathrm{M} \times \mathrm{C}_{\mathrm{LM}}=0.8 \times 0.23=0.184$.

An alternate procedure for C_{LM} is as follows (Ref.12, chapter 4, see also Ref..13, section 7.11.2).
$C_{L}=C_{L \alpha}\left(\alpha-\alpha_{o L W}\right) ;$ or $C_{L M}=C_{L \alpha M}\left(\alpha-\alpha_{0 L W}\right)$
or $C_{L u}=M C_{L a M}\left(\alpha-\alpha_{0 L W}\right) ; \alpha_{0 L W}=$ Zero lift angle of wing

In a manner similar to the calculation of $\mathrm{C}_{\mathrm{L} \alpha}$ at $\mathrm{M}=0.8$, the values of $\mathrm{C}_{\mathrm{L} \alpha}$ at $\mathrm{M}=0.82$ and $\mathrm{M}=0.78$ are obtained as 4.9645 and 4.8391 respectively.
Then, $\mathrm{C}_{\mathrm{LaM}}=(4.9645-4.8391) /(0.82-0.78)=3.135$
$\left(\alpha-\alpha_{0 L W}\right)=C_{L} / a_{w}=0.616 / 4.9$
Hence, $C_{L u}=0.8 \times 3.135 \times 0.616 / 4.9=0.315$
Based on the area of $511 \mathrm{~m}^{2}$ this becomes:

$$
\mathrm{C}_{\mathrm{Lu}}=0.315 \times \frac{550.5}{511}=0.346
$$

Remarks:

i) Reference 11 volume VI, p. 376 gives:

$$
\mathrm{C}_{\mathrm{Lu}}=\left\{\mathrm{M}_{1}^{2} \times\left(\cos \Lambda_{\mathrm{c} / 4}\right)^{2} \times \mathrm{C}_{\mathrm{L} 1}\right\} /\left\{1-\mathrm{M}_{1}^{2}\left(\cos \Lambda_{\mathrm{c} / 4}\right)^{2}\right\}
$$

Where, $\mathrm{M}_{1} \& \mathrm{C}_{\mathrm{L} 1}$ are the Mach number and lift coefficient in chosen flight condition. In the present case:

$$
\mathrm{C}_{\mathrm{Lu}}=\left\{0.8^{2} \times(\cos 38.5)^{2} \times 0.616\right\} /\left\{1-0.8^{2}(\cos 38.5)^{2}\right\}=0.3971
$$

ii) For stability analysis of longitudinal motion, in section $8.4, \mathrm{C}_{\mathrm{Lu}}=0.315$ is used.
5.6 Estimation of C_{mu}

From Eq.(4.3) of Ref. 2
$C_{m u}=-C_{L} \frac{\partial \bar{X}_{a c w}}{\partial \mathrm{M}}$
To calculate this quantity, $\bar{X}_{\text {acw }}$ must be obtained at Mach numbers close to the flight Mach number. Adopting the procedure outlined in section 5.3, the following values are obtained.

M	0.78	0.82
$\overline{\mathrm{X}}_{\mathrm{acW}}$	0.3243	0.3356

Hence, $\quad \partial \overline{\mathrm{X}}_{\text {acw }} / \partial \mathrm{M}=(0.3356-0.3243) / 0.04=0.2825$
Hence, $C_{m u}=-0.616 \times 0.2825=-0.174$
Based on the area of $511 \mathrm{~m}^{2}$ and reference chord of 8.33 m
$\mathrm{C}_{\mathrm{mu}}=-0.1740 \times 550.5 \times 10.2 /(511 \times 8.33)=-0.2304$
Alternatively (Ref.13, section 7.11.3), $\mathrm{C}_{\mathrm{mu}}=\mathrm{M} \mathrm{C}_{\mathrm{mM}}$

From figure on p. 222 of R. $3 \mathrm{C}_{\mathrm{mM}}=0.16$, consequently

$$
\mathrm{C}_{\mathrm{mu}}=0.8 \times 0.16=0.128
$$

It is seen that the calculated value of C_{mu} (i.e. -0.2304) and that given in Ref. 3 (i.e. 0.128) are not only different but have different signs. It may be pointed out that from Ref. 3 it is noticed that C_{mM}, depends on Mach number and also on C_{L}. Refer also to remark in section 8.4.

5.7 Estimation of C_{Dq}

It is generally small and hence neglected.

5.8 Estimation of C_{Lq}

From Eq. (5.1) of Ref. 2
$\mathrm{C}_{\mathrm{Lq}}=\mathrm{C}_{\mathrm{Lqw}}+\mathrm{C}_{\mathrm{LqH}}$
$\left(\mathrm{C}_{\mathrm{Lqw}}\right)_{\mathrm{M}}=\left(\frac{\mathrm{A}+2 \cos \Lambda_{\mathrm{c} / 4}}{\mathrm{AB}+2 \cos \Lambda_{\mathrm{c} / 4}}\right)\left(\mathrm{C}_{\mathrm{Lqw}}\right)_{\mathrm{M}=0}$
$\left(\mathrm{C}_{\mathrm{Lqw}}\right)_{\mathrm{M}=0}=\left(\frac{1}{2}+\frac{2 \mathrm{X}_{\mathrm{W}}}{\overline{\mathrm{c}}}\right)\left(\mathrm{C}_{\mathrm{Law}}\right)_{\mathrm{M}=0}$
where, X_{W} is the distance between c.g and a.c. In the present case it is zero. Noting that $\left(\mathrm{C}_{\mathrm{Law}}\right)_{\mathrm{M}=0}$ is 4.005 , gives:
$\left(\mathrm{C}_{\mathrm{Lqw}}\right)_{\mathrm{M}=0}=\left(\frac{1}{2}+0\right) 4.005=2.003$
$\mathrm{A}=$ aspect ratio
$\mathrm{B}=\sqrt{ }\left\{1-\mathrm{M}^{2} \cos ^{2} \Lambda_{\mathrm{c} / 4}\right\}=\sqrt{ }\left\{1-0.8^{2} \cos ^{2} 38.5\right\}=0.78$
Consequently, $\left(\mathrm{C}_{\mathrm{Lqw}}\right)_{\mathrm{M}}=\frac{6.46+2 \cos 38.5}{6.46 \times 0.78+2 \cos 38.5} \times 2.003=2.447$
$\left(C_{\mathrm{LqH}}\right)_{\mathrm{M}}=2 \mathrm{C}_{\mathrm{LaH}} \eta_{\mathrm{H}} \overline{\mathrm{V}}_{\mathrm{H}} ; \quad \overline{\mathrm{V}}_{\mathrm{H}}=\frac{\mathrm{X}_{\mathrm{H}}}{\overline{\mathrm{c}}} \frac{\mathrm{S}_{\mathrm{H}}}{\mathrm{S}}$
$\mathrm{X}_{\mathrm{H}}=$ distance from c.g to a.c of tail $=61.75-31.41=30.34 ; \mathrm{X}_{\mathrm{H}} / \overline{\mathrm{c}}=2.975$
$\overline{\mathrm{V}}_{\mathrm{H}}=\frac{30.34}{10.2} \times \frac{135.08}{550.5}=0.731$
$\left(\mathrm{C}_{\mathrm{LqH}}\right)_{\mathrm{M}}=2 \times 4.135 \times 0.95 \times 0.731=5.741$
$\mathrm{C}_{\mathrm{Lq}}=2.447+5.741=8.188$

5.9 Estimation of C_{mq}

From Eq.(5.6) of Ref. 2

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{mq}}=\mathrm{C}_{\mathrm{mqW}}+\mathrm{C}_{\mathrm{mqH}} \\
& \left(\mathrm{C}_{\mathrm{mqW}}\right)_{\mathrm{M}}=\left(\mathrm{C}_{\mathrm{mqW}}\right)_{\mathrm{M}=0}\left[\frac{\frac{\mathrm{~A}^{3} \tan ^{2} \Lambda_{\mathrm{c} / 4}}{\mathrm{AB}+6 \cos \Lambda_{\mathrm{c} / 4}}+\frac{3}{\mathrm{~B}}}{\frac{\mathrm{~A}^{3} \tan ^{2} \Lambda_{\mathrm{c} / 4}}{\mathrm{~A}+6 \cos \Lambda_{\mathrm{c} / 4}}+3}\right] \\
& \left(\mathrm{C}_{\mathrm{mqW}}\right)_{\mathrm{M}=0}=-\mathrm{KC}_{\mathrm{laW}} \cos \Lambda_{\mathrm{c} / 4}\left(\frac{\mathrm{~A}\left(2\left(\frac{\overline{\mathrm{X}}_{\mathrm{W}}}{\overline{\mathrm{c}}}\right)^{2}+\frac{1}{2}\left(\frac{\overline{\mathrm{X}}_{\mathrm{W}}}{\overline{\mathrm{c}}}\right)\right)}{\mathrm{A}+2 \cos \Lambda_{\mathrm{c} / 4}}+\frac{1}{24} \frac{\mathrm{~A}^{3} \tan ^{2} \Lambda_{\mathrm{c} / 4}}{\mathrm{~A}+6 \cos \Lambda_{\mathrm{c} / 4}}+\frac{1}{8}\right)
\end{aligned}
$$

From Fig 5.1 of Ref.2, $\mathrm{K}=0.705$ for $\mathrm{A}=6.46, \mathrm{C}_{\text {laW }}=2 \pi=6.28$ and as evaluated in section 5.8, and $\mathrm{B}=0.78$.
$\left(\mathrm{C}_{\mathrm{mqW}}\right)_{\mathrm{M}=0}=-0.705 \times 6.28 \cos 38.5\left\{0+1 / 24 \frac{6.46^{3} \tan ^{2} 38.5}{6.46+6 \cos 38.5}+1 / 8\right\}=-2.641$
$\left(C_{m q W}\right)_{M}=-2.641\left[\frac{\frac{6.46^{3} \tan ^{2} 38.5}{6.46 \times 0.78+6 \times \cos 38.5}+\frac{3}{0.78}}{\frac{6.46^{3} \tan ^{2} 38.5}{6.46+6 \times \cos 38.5}+3}\right]=-3.086$
$C_{m q H}=-\frac{2 C_{\text {LaH }} \eta_{H} \overline{\mathrm{~V}}_{\mathrm{H}} \mathrm{X}_{\mathrm{H}}}{\overline{\mathrm{c}}}=-2 \times 4.135 \times 0.95 \times 0.731 \times 2.975=-17.09$
Hence, $\mathrm{C}_{\mathrm{mq}}=-17.09-3.086=-20.17$
Based on an area of $511 \mathrm{~m}^{2}$ and $\bar{c}=8.33 \mathrm{~m} \mathrm{C}_{\mathrm{mq}}$ is :

$$
\mathrm{C}_{\mathrm{mq}}=-20.17 \times \frac{550.5}{511} \times \frac{10.2}{8.33}=-26.7
$$

From p. 221 of Ref. $3 \mathrm{C}_{\mathrm{mq}}=-23.9$. The estimated value is higher perhaps because the value of $\mathrm{C}_{\mathrm{L} \alpha}$ given by theory is higher.

5.10 Estimation of $C_{D \dot{\alpha}}$

This is taken as zero.
5.11 Estimation of $C_{L \dot{\alpha}}$

From Eq.(6.1) of Ref.2.
$\mathrm{C}_{\mathrm{L} \dot{\alpha}}=\mathrm{C}_{\mathrm{L} \dot{\alpha} \mathrm{W}}+\mathrm{C}_{\mathrm{L} \dot{\mu} \mathrm{H}}$
Expressions are given in Ref. 2 for $\mathrm{C}_{\mathrm{L} \dot{\mathrm{j}}}$ and $\mathrm{C}_{\mathrm{L} \dot{\mu}}$. However, from reference 11 vol.VI p. 387.
$\mathrm{C}_{\mathrm{L} \dot{\alpha}} \approx-\mathrm{C}_{\mathrm{m} \dot{\alpha}}\left(\overline{\mathrm{c}} / \mathrm{X}_{\mathrm{H}}\right)$
Hence, $\mathrm{C}_{\mathrm{L} \dot{\alpha}}$ is estimated after evaluating $\mathrm{C}_{\mathrm{m} \dot{\alpha}}$.

5.12 Estimation of $\mathrm{C}_{\mathrm{m} \dot{\alpha}}$

From Eq. (6.4) of Ref. 2
$\mathrm{C}_{\mathrm{m} \dot{\alpha}}=\mathrm{C}_{\mathrm{maj} \mathrm{W}}+\mathrm{C}_{\mathrm{m} \dot{\mathrm{H}} \mathrm{H}}$
$\mathrm{C}_{\text {mäW }}=0$
$C_{\text {màh }}=-2 C_{L \alpha H} \eta_{H} \bar{V}_{H}\left(X_{H} / \bar{c}\right)(d \varepsilon / d \alpha)$

$$
=-2 \times 4.135 \times 0.95 \times 0.731 \times 2.975 \times 0.432=-6.87
$$

Hence, $C_{m \dot{\alpha}}=-6.87$
The value of $\mathrm{C}_{\mathrm{m} \dot{\alpha}}$ based on the area of $511 \mathrm{~m}^{2}$ and $\overline{\mathrm{c}}$ of 8.33 m is :
$C_{m \dot{\alpha}}=-6.87 \times \frac{550.5}{511} \times \frac{10.2}{8.33}=-9.06$

Remarks:

i) Value of $\mathrm{C}_{\mathrm{m} \dot{\alpha}}$ given in Ref. 3 is -6.55 .
ii) Value of $\mathrm{C}_{\mathrm{L} \dot{\alpha}}$ is: $-(-6.87 / 2.975)=2.31$

6. Estimation of lateral stability derivatives

These derivatives can be classified as angle of sideslip derivatives $\mathrm{C}_{Y \beta}, \mathrm{C}_{1 \beta}^{\prime}, \mathrm{C}_{\mathrm{n} \beta}$; roll rate derivatives $\mathrm{C}_{\mathrm{Yp}}, \mathrm{C}_{\mathrm{lp}}^{\prime}, \mathrm{C}_{\mathrm{np}}$ and yaw rate derivatives $\mathrm{C}_{\mathrm{Yr}}, \mathrm{C}^{\prime}{ }_{\mathrm{lr}}, \mathrm{C}_{\mathrm{nr}}$

6.1 Estimation of $\mathrm{C}_{\mathrm{Y} \beta}$

From Eq. (7.1) of Ref. 2

$$
\begin{aligned}
& C_{Y \beta}=C_{Y \beta W}+C_{Y \beta B}+C_{Y \beta V} \\
& C_{Y \beta W}=-0.0001 \Gamma \times 57.3 \\
& \Gamma=7^{0}, \text { hence } C_{Y \beta W}=-0.0001 \times 7 \times 57.3=-0.0401 \mathrm{rad}^{-1}
\end{aligned}
$$

$C_{Y \beta \text { B }}=-2 K_{i}\left(S_{0} / S\right)$
K_{i} is given in Fig 7.1 of Ref.2. It depends on the position of wing on fuselage and on ($2 \mathrm{z}_{\mathrm{w}} / \mathrm{d}$)
$\mathrm{Zw}=$ distance from body centre to $\mathrm{c} / 4$ of exposed wing root chord $=3.5 \mathrm{~m}$ (estimated from Fig.1).
$\mathrm{d}=$ maximum diameter at wing body junction $=7.2 \mathrm{~m}$
Hence, $2 \mathrm{z}_{\mathrm{w}} / \mathrm{d}=3.5 \times 2 / 7.2=0.972$
$K_{i}=1.48$ from Fig 7.1 of Ref.2.
$S_{0}=$ cross sectional area of the fuselage at the point where $\mathrm{dS} / \mathrm{dx}$ is maximum. This is estimated to occur at 36.5 m from nose. At this location S_{0} is $32.2 \mathrm{~m}^{2}$.
$\mathrm{C}_{\mathrm{Y} \beta \mathrm{B}}=-2 \times 1.48 \frac{32.2}{550.5}=-0.1731$
$\mathrm{C}_{\mathrm{y} \mathrm{\beta v}}$:
$C_{Y \beta V}=-k C_{L a V}\left(1+\frac{d \sigma}{d \beta}\right) \eta_{V} \frac{S_{V}}{S}$
The factor k, given in Fig.7.3 of R.2, depends on ($\mathrm{b}_{\mathrm{V}} / 2 \mathrm{r}_{1}$). See section 2.5 for definition of ' r_{1} '. Here $b_{V} / 2 r_{1}=11.6 / 5.0=2.32$. Hence, $k=0.82$
$C_{\text {Lav }}$: It depends on the effective aspect ratio of the vertical tail $\left(A_{\text {Veff }}\right)$.

$$
\mathrm{A}_{\mathrm{Veff}}=\frac{\mathrm{A}_{\mathrm{VB}}}{\mathrm{~A}_{\mathrm{V}}} \mathrm{~A}_{\mathrm{V}}\left\{1+\mathrm{K}_{\mathrm{H}}\left(\frac{\mathrm{~A}_{\mathrm{VHB}}}{\mathrm{~A}_{\mathrm{VB}}}-1\right)\right\}
$$

From section 2.5, $\mathrm{A}_{\mathrm{V}}=1.38, \lambda_{\mathrm{V}}=0.296$.
From Fig.7.5 of Ref. 2
$\frac{\mathrm{A}_{\mathrm{VB}}}{\mathrm{A}_{\mathrm{V}}}=1.58$
$\frac{A_{V H B}}{A_{V B}}$ depends on $z_{H} / b_{v} \cdot z_{H}$ is defined in Fig 7.6 of Ref.2.
It is taken as zero because a.c. of the horizontal tail lies below the root chord of the vertical tail. X is the distance of the a.c. of the horizontal tail from the leading edge of the vertical tail root chord $=61.75-52.0=9.75 \mathrm{~m}$.
Hence, $\mathrm{X} / \mathrm{c}_{\mathrm{v}}=9.75 / 13=0.75 ; \mathrm{C}_{\mathrm{v}}$ is taken equal to $\left(\mathrm{c}_{\mathrm{r}}\right)_{\mathrm{v}}$
From Fig.7.6 of Ref. 2
$\frac{\mathrm{A}_{\mathrm{VHB}}}{\mathrm{A}_{\mathrm{VB}}}=1.29$
$S_{H} / S_{V}=135.08 / 97.73=1.372$. From Fig.7.7 of Ref.2, $K_{H}=1.03$
Then, $\mathrm{A}_{\text {Veff }}=1.58 \times 1.38[1+1.03(1.29-1)]=2.83$
The term $\mathrm{C}_{\mathrm{Lav}}$ is calculated from $\mathrm{A}_{\text {Veff }}$ in the same manner like that for a wing of this aspect ratio. Using Eq.(3.8) of Ref.2, $\mathrm{C}_{\mathrm{Lav}}=3.40$.
From Eq.(7.5) of Ref. 2
$\{1+(\mathrm{d} \sigma / \mathrm{d} \beta)\} \eta_{\mathrm{V}}=0.724+3.06 \frac{97.73 / 550.5}{1+\cos 39.8}+0.4\left(\frac{3.5}{7.2}\right)+0.009 \times 6.46=1.284$
Hence, $C_{Y \beta V}=-0.82 \times 3.40 \times 1.284 \times(97.73 / 550.5)=-0.636$
And
$C_{Y \beta}=-0.636-0.1731-0.0401=-0.8492$
Based on an area of $511 \mathrm{~m}^{2}, \mathrm{C}_{Y \beta}=.8492 \times(550.5 / 511)=-0.9148$
From Ref. 3 the value of $\mathrm{C}_{Y \beta}$ is -0.884 .

6.2 Estimation of $\mathrm{C}_{1 \beta}^{\prime}$

From Eq.(7.8) of Ref. 2

$$
\mathrm{C}_{1 \beta}^{\prime}=\mathrm{C}_{1 \beta \mathrm{WB}}^{\prime}+\mathrm{C}_{1 \beta \mathrm{H}}^{\prime}+\mathrm{C}_{1 \beta V}^{\prime}
$$

Now,

$$
\begin{aligned}
\mathrm{C}_{1 \beta W \mathrm{WB}}^{\prime}=57.3 & {\left[\left\{\mathrm{C}_{\mathrm{LWB}}\left(\frac{\mathrm{C}_{1 \beta}^{\prime}}{\mathrm{C}_{\mathrm{L}}}\right)_{\Lambda_{\mathrm{C} 2}} \mathrm{~K}_{\mathrm{M} \Lambda} \mathrm{~K}_{\mathrm{f}}+\left(\frac{\mathrm{C}_{1 \beta}^{\prime}}{\mathrm{C}_{\mathrm{L}}}\right)_{\mathrm{A}}\right\}+\Gamma\left\{\frac{\mathrm{C}_{1 \beta}^{\prime}}{\Gamma} \mathrm{K}_{\mathrm{M} \Gamma}+\frac{\Delta \mathrm{C}_{1 \beta}^{\prime}}{\Gamma}\right\}\right.} \\
& \left.+\left(\Delta \mathrm{C}_{1 \beta}^{\prime}\right)_{\mathrm{ZW}}+\theta \tan \Lambda_{\mathrm{c} / 4}\left(\frac{\Delta \mathrm{C}_{1 \beta}^{\prime}}{\theta \tan \Lambda_{\mathrm{c} / 4}}\right)\right]
\end{aligned}
$$

$\mathrm{C}_{\mathrm{LWB}} \approx \mathrm{C}_{\mathrm{L}}=0.616$
For $\mathrm{A}=6.46, \lambda=0.29$ and $\Lambda_{\mathrm{C} / 2}=35.0^{0}$, from Fig 7.11 of Ref. 2
$\left(\frac{\mathrm{C}^{\prime}{ }^{\prime}}{\mathrm{C}_{\mathrm{L}}}\right) \Lambda_{\mathrm{C} / 2}=-0.0029$
$\mathrm{M} \cos \Lambda_{\mathrm{c} / 2}=0.8 \cos 35=0.655 ; \frac{\mathrm{A}}{\cos \Lambda_{\mathrm{c} / 2}}=\frac{6.46}{\cos 35}=7.86$
From Fig 7.12 of Ref.2, $\mathrm{K}_{\mathrm{M} \Lambda}=1.23$.

The parameter K_{f} depends on $l_{\mathrm{f}} / \mathrm{b}$. The length l_{f} is shown in Fig. 7.13 of Ref.2. Based on Fig 2 of this appendix, $l_{\mathrm{f}}=45.16 \mathrm{~m}$.
$l_{\mathrm{f}} / \mathrm{b}=45.16 / 59.64=0.757$.
From Fig.7.13 of Ref.2, $\mathrm{K}_{\mathrm{f}}=0.884$
From Fig 7.14 of Ref.2, $\left(\mathrm{C}_{1 \beta}^{\prime} / \mathrm{C}_{\mathrm{L}}\right)_{\mathrm{A}}=-0.0002$
For $\Lambda_{\mathrm{c} / 2}=35^{0}$ and $\lambda=0.29$, from Fig 7.15, $\left(\mathrm{C}_{1 \beta}^{\prime} / \Gamma\right)=-0.0001825$
From Fig 7.16, $\mathrm{K}_{\mathrm{M} \mathrm{\Gamma}}=1.15$
From Eq.(7.10) of Ref. 2
$\frac{\Delta \mathrm{C}_{1 \beta}^{\prime}}{\Gamma}=-0.0005 \sqrt{\mathrm{~A}}(\mathrm{~d} / \mathrm{b})^{2}$
$d=\sqrt{\text { (average fuselage cross sectional area } / 0.7854 \text {) }}=6.41 \mathrm{~m}$
Hence, $\Delta \mathrm{C}_{1 \beta}^{\prime} / \Gamma=-0.0005 \times \sqrt{6.46}(6.41 / 59.64)^{2}=-0.0000146$
From Eq.(7.12) of Ref. 2
$\left(\Delta \mathrm{C}_{1 \beta}^{\prime}\right)_{\mathrm{ZW}}=-\frac{1.2 \sqrt{\mathrm{~A}}}{57.3}\left(\frac{\mathrm{Z}_{\mathrm{w}}}{\mathrm{b}}\right)\left(\frac{2 \mathrm{~d}}{\mathrm{~b}}\right)=-\frac{1.2 \times \sqrt{6.46}}{57.3}\left(\frac{3.5}{59.64}\right)\left(\frac{2 \times 6.41}{59.64}\right)=-0.000671$
From Fig 7.17 of Ref. 2
$\frac{\Delta \mathrm{C}_{l \beta}^{\prime}}{\theta \tan \Lambda_{\mathrm{c} / 4}}=-0.000031$
The quantity θ is the wing twist which is assumed to be equal to -3^{0}
Now, $\mathrm{C}_{1 \beta W \mathrm{~B}}^{\prime}=57.3[0.616(-0.0029 \times 1.23 \times 0.884-0.0002)$

$$
+7(-0.0001825 \times 1.15-0.0000146)-0.000671+(-3)(-0.000031) \tan 38.5]=-0.2431
$$

From Eq.(7.13) of Ref. 2 : $\mathrm{C}_{1 \beta H}^{\prime}=\mathrm{C}_{1 \beta H B}^{\prime} \frac{\mathrm{S}_{\mathrm{H}} \mathrm{b}_{\mathrm{H}}}{\mathrm{Sb}}$
$\mathrm{C}_{1 \beta H B}^{\prime}$ can be evaluated in the same manner as $\mathrm{C}_{1 \beta W \mathrm{~B}}^{\prime}$. It is simply taken equal to $\mathrm{C}_{1 \beta W \mathrm{~B}}^{\prime}$ i.e $C_{1 \beta H B}^{\prime}=-0.2431$.

Then,

$$
\mathrm{C}_{1 \beta \mathrm{H}}^{\prime}=-\frac{0.2431 \times 135.07 \times 22.17}{550.5 \times 59.64}=-0.0222
$$

From Eq.(7.14) of Ref. 2
$\mathrm{C}_{1 \beta \mathrm{~V}}^{\prime}=\mathrm{C}_{\mathrm{Y} \beta \mathrm{V}}\left(\frac{\mathrm{Z}_{\mathrm{V}} \cos \alpha-l_{\mathrm{V}} \sin \alpha}{\mathrm{b}}\right)$
$l_{\mathrm{v}}=$ distance between $\mathrm{c} . \mathrm{g}$ and the a.c of vertical tail
Reference 2 shows the distances l_{v} and Z_{v} in Fig.7.18. However, it does not give a procedure to obtain the location of the aerodynamic centre of vertical tail from the leading edge of its root chord (the distance $\frac{X_{a c}^{\prime}}{c_{r}}$ in section 5.3 of this appendix). Hence, the procedure to obtain $\frac{X_{a c}}{c_{r}}$ for the wing is adopted considering the vertical tail as a hypothetical wing. For this purpose, the span of a hypothetical wing $\left(b_{h}\right)$ is taken as $2 b_{v}$ or $\mathrm{b}_{\mathrm{H}}=2 \times 11.6=23.2 \mathrm{~m}$. The root chord, tip chord and taper ratio of the hypothetical wing are: $\left(\mathrm{c}_{\mathrm{r}}\right)_{\mathrm{h}}=\left(\mathrm{c}_{\mathrm{r}}\right)_{\mathrm{V}}=13.00 \mathrm{~m}$, and $\left(\mathrm{c}_{\mathrm{t}}\right)_{\mathrm{h}}=\left(\mathrm{c}_{\mathrm{t}}\right)_{\mathrm{V}}=3.85 \mathrm{~m}$, and $\lambda_{\mathrm{h}}=\lambda_{\mathrm{V}}=0.297$. This hypothetical wing thus has an area $\left(\mathrm{S}_{\mathrm{h}}\right)$ of $(23.2 / 2)(13+3.85)=$ $195.46 \mathrm{~m}^{2}$ and an aspect ratio $\left(\mathrm{A}_{\mathrm{h}}\right)$ of $23.2^{2} / 195.46=2.75$. Hence, the parameters $\mathrm{A}_{\mathrm{h}} \tan \Lambda_{\mathrm{LE}}$ and $\beta / \tan \Lambda_{\mathrm{LE}}$ are $2.75 \tan 46.26$ and $0.6 / \tan 26.26$ or 2.878 and 0.574 .

From Fig 3.9 of Ref.2, $\frac{X_{a c}^{\prime}}{\left(c_{r}\right)}$ for the hypothetical wing is 0.597 .
Consequently, for the vertical tail, $\mathrm{X}_{\mathrm{ac}}^{\prime}=0.597 \times 13=7.76 \mathrm{~m}$.
Since, leading edge of the vertical tail is at 52 m from the nose, the location of a.c. from nose is $(52+7.76) \mathrm{m}$ or 59.76 m

Noting that the c.g. of the airplane is at 31.41 m from nose, gives :
$l_{\mathrm{v}}=59.76-31.41=28.35 \mathrm{~m}$.
$\mathrm{Z}_{\mathrm{v}}=$ distance of vertical tail a.c above c.g. Assuming c.g to lie on the centre line of the cylindrical portion of the fuselage this is $=6.35 \mathrm{~m}$
$\alpha=$ angle of attack. Assuming $\alpha_{0 L}=-2^{0}$ one gets :
$\mathrm{C}_{\mathrm{L}}=\mathrm{C}_{\mathrm{L} \alpha}\left(\alpha-\alpha_{0 \mathrm{~L}}\right)$
or $0.616=(5.44 / 57.3)(\alpha+2)$
Hence, $\alpha=4.5^{0}$
Note : The value of α given in Ref. 3 is 4^{0}
Then,

$$
C_{1 \beta v}^{\prime}=-6.36 \frac{6.35 \cos 4.5^{0}-28.35 \sin 4.5^{0}}{59.64}=-0.042
$$

Hence,
$\mathrm{C}_{1 \beta}^{\prime}=-0.2279-0.0222-0.042=-0.2921$

With reference to wing area of $511 \mathrm{~m}^{2}, \mathrm{C}_{l \beta}^{\prime}=-0.3144$. The value from figures of Ref. 3 is - 0.279

6.3 Estimation of $\mathrm{C}_{\mathrm{n} \beta}$

From Eq.(7.13) of Ref. 2
$\mathrm{C}_{\mathrm{n} \beta}=\mathrm{C}_{\mathrm{n} \beta \mathrm{W}}+\mathrm{C}_{\mathrm{n} \beta \mathrm{B}}+\mathrm{C}_{\mathrm{n} \beta \mathrm{v}}$
$\mathrm{C}_{\mathrm{n} \beta \mathrm{W}}=0$ as angle of attack is not high
$\mathrm{C}_{\mathrm{n} \beta \mathrm{B}}=-57.3 \mathrm{~K}_{\mathrm{N}} \mathrm{K}_{\mathrm{R} 1} \frac{\mathrm{~S}_{\mathrm{BS}}}{\mathrm{S}} \frac{l_{\mathrm{B}}}{\mathrm{b}}$

The quantity K_{N} is shown in Fig.7.19 of Ref.2. It depends on three parameters namely
$l_{\mathrm{B}}^{2} / \mathrm{S}_{\mathrm{BS}}, \sqrt{\left(\mathrm{h}_{1} / \mathrm{h}_{2}\right)}$ and h / W.
$l_{\mathrm{B}}=68.63 \mathrm{~m}, \mathrm{~S}_{\mathrm{BS}}=$ body side area $=416 \mathrm{~m}^{2}$
$X_{m}=c . g$ location from nose $=31.41 \mathrm{~m}$
$\mathrm{X}_{\mathrm{m}} / l_{\mathrm{B}}=31.41 / 68.63=0.4576$
h_{1} and h_{2} are fuselage heights at $l_{\mathrm{B}} / 4$ and $3 l_{\mathrm{B}} / 4$. From Fig. 3 these are 7.8 m and 5.8 m .
Hence, $\sqrt{\mathrm{h}_{1} / \mathrm{h}_{2}}=\sqrt{7.8 / 5.8}=1.16$
$\mathrm{h}=$ maximum height of fuselage $=8.4 \mathrm{~m}$
$\mathrm{W}=$ body maximum width $=6.41 \mathrm{~m}$
Hence, $\mathrm{h} / \mathrm{W}=8.4 / 6.41=1.31$
$l_{\mathrm{B}}^{2} / \mathrm{S}_{\mathrm{BS}}=68.63^{2} / 416=11.32$
Then, from Fig 7.19 of Ref. $2, \mathrm{~K}_{\mathrm{N}}=0.00124$
K_{RI} depends on fuselage Reynolds number. Which is 258.1×10^{6}.
From Fig 7.20 of Ref.2, $\mathrm{K}_{\mathrm{RI}}=2.14$
Consequently, $\mathrm{C}_{\mathrm{n} \beta \mathrm{B}}=-57.3 \times 0.00124 \times 2.14 \times(416 / 550.5) \times \frac{68.63}{59.64}=-0.1321$
$\mathrm{C}_{\mathrm{n} \beta \mathrm{V}}=-\mathrm{C}_{\mathrm{Y} \beta \mathrm{V}}\left(\frac{l_{\mathrm{V}} \cos \alpha+\mathrm{Z}_{\mathrm{V}} \sin \alpha}{\mathrm{b}}\right)$
$=0.636\left(\frac{28.35 \cos 4.5^{0}+6.35 \sin 4.5^{0}}{59.64}\right)=0.3067$

Hence, $\mathrm{C}_{\mathrm{n} \beta}=-0.1321+0.3067=0.1746$
Based on an area of $511 \mathrm{~m}^{2}$ this would be $=0.188$

From Ref. 3 the value of $\mathrm{C}_{\mathrm{n} \beta}=0.195$
6.4 Estimation of C_{Yp}

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{Yp}} \approx \mathrm{C}_{\mathrm{Ypv}}=2\left(\frac{\mathrm{Z}_{\mathrm{V}} \cos \alpha-l_{\mathrm{V}} \sin \alpha}{\mathrm{~b}}\right) \mathrm{C}_{\mathrm{Y} \beta \mathrm{~V}} \\
& =2\left(\frac{6.35 \cos 4.5^{0}-28.35 \sin 4.5^{0}}{59.64}\right) \times(-0.636)=-0.0841
\end{aligned}
$$

