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10.1 Introduction 

To conclude this introductory course on airplane stability and control, the  

topics like stability after stall, automatic control, Laplace transforms, response 

and transfer functions are briefly touched upon in this chapter. 

10.2 Stability after stall, autorotation and spin  

The airplane is said to have stalled when the angle of attack exceeds the 

value corresponding to CLmax. The important effects after stall are as follows.  

a) The lift coefficient (CL) decreases with increase of angle of attack (α) or the 

slope of the lift curve becomes negative (point C in  Fig.10.1). 
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Fig.10.1 Schematic variations of CL, CD and Cmcg with angle of attack 

 

 

 

 

b) The drag coefficient increases rapidly.  

c) The moment coefficient becomes more negative. Compare points A,B and C in 

Fig.10.1.  

    The effects of stall are felt markedly on the lateral stability. As the slope of 

the lift curve becomes negative, the rolling moment which is of the nature of 
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damping when α < αstall, reverses its sign and becomes a reinforcing effect. 

Consequently, the airplane would tend to rotate about x-axis. This condition is 

called autorotation. Later, the airplane may go into a spin. In this flight (spin) the 

airplane moves along a helical path and rotates about a vertical axis (Fig.10.2). 

As α > αstall, the aileron and elevator have lost their effectiveness. Rudder is the 

only control effective in spin recovery. To come out of spin the pilot applies 

appropriate rudder deflection so that the airplane stops spinning. Subsequently, 

the pilot goes into a dive and pulls-out. An uncontrolled spin would lead to 

disastrous consequences. Guidelines for design of rudder and its location for 

spin recovery are available in Ref. 10.1, chapter 4. Some airplanes have a stall 

warning device which alerts the pilot of approaching stall and to take preventive 

measures. In a spin-proof airplane the elevator is incapable of achieving CLmax ; 

thereby preventing stall and subsequent spin. For further details on autorotation 

and spin see Ref.1.12, chapters 7 and 8. 

Remark: 

   For a video clip on motion of Hunter jet in spin, see www.youtube.com.  
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Fig.10.2 Schematic of flight in a spin 

(Adapted from Ref.1.12, chapter 7 with permission from American Institute of 

Aeronautics and Astronautics, Inc.) 

 

10.3 Stability with automatic control  

   In an airplane with automatic control, the control surfaces are deflected 

depending on the linear and angular motions of the airplane. This requires the 

following equipments. 

a) Appropriate sensors to measure the motion of the airplane. 

b)  A flight control computer to calculate the response and the control 

deflections required. 

c)  Mechanisms to deflect the controls.  

Free Hand

Free Hand



Flight dynamics –II  Prof. E.G. Tulapurkara  

Stability and control 

Dept. of Aerospace Engg., IIT Madras 6 

    It may be pointed out that the velocity and altitude of the airplane are 

obtained from the static pressure and total pressure sensed by the Pitot static 

system. The acceleration is sensed by the accelerometer. The angular positions 

of the airplane are sensed with the help of the gyros.  

    After sensing these parameters, the deviations from the desired flight path 

can be computed by the flight computer. Similarly, the changes over a period of 

time can be obtained by integrating the variation of the desired parameter over a 

chosen interval of time. The flight computer also has in its memory the 

information about the airplane dynamics like values of stability derivatives. The 

computer calculates the response of the airplane and the control deflections 

needed to maintain the desired flight path. The computer also sends commands 

for appropriate deflection of control surfaces.  

   To illustrate the effect of automatic control on stability of the airplane, consider 

an elevator which is deflected automatically in response to the changes in 

(a)velocity (Δu), (b) angle of attack (Δα) and (c) pitch rate (Δq) i.e. 

    
e 1 2 3

Δδ = k  Δu + k  Δα + k  Δq                                                                     (10.1)                                                                                                           

The quantities k1, k2, k3 are called gearing ratios or feedback gain and depend on 

the design of the automatic control system.  

To examine the stability of an airplane without automatic control, Δδe and ΔδT 

were taken as zero in Eq.(8.40). On the other hand, when an airplane has the 

automatic control, the quantities Δδe and ΔδT would be decided by the values of 

Δu , Δα and Δq. Consequently, equations of motion will change as the terms  

Xδe Δδe, Zδe Δδe ,Mδe Δδe have values depending on the gearing ratios. Hence, in 

the state space form of equation:   

X A. X+B. η ,   

the vector η becomes:  

        T 'η k X η                                                                                         (10.2)                                                                                                              

where kT is the transpose of the feedback gain vector and η′ is the pilot input.  

Thus, for an airplane with automatic control :  

X ( ) A-Bk X BT 'η                                                                                    (10.3) 
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Or X * A X B 'η *, ( )Twhere, A A-Bk                                                    (10.4)                                                                                                                               

A* is called augmented matrix.  

The characteristic equation for Eq.(10.3) would be:  

*| | 0rλ  I A                                                                                                  (10.5)                                                                                                           

Expanding Eq.(10.5) gives the following new stability quartic: 

4 3 2

2 2 2 2 2A  λ  + B  λ  + C  λ  + D  λ + E = 0                                                           (10.6)                                                                                                                        

where the coefficients A2, B2, C2, D2 and E2 involve  k1, k2 and k3 in addition to 

the stability derivatives of the airplane. Thus, it is noticed that by automatic 

control the coefficients of the characteristic equation get modified. Hence, the 

stability of the airplane is altered. This can be explained in other words as 

follows. 

    Recall that the stability of an airplane is its inherent ability to return to the 

equilibrium position after the disturbance. Now, for an airplane with automatic 

control, as the name implies, the changes in the control deflections are brought 

about without pilot’s intervention. Hence, the inherent features of the airplane and 

consequently the stability levels are changed by automatic control.                                                                        

Yaw damper  

      It was pointed out in section 9.8 that in lateral dynamic stability under 

certain situations, either the spiral mode or the Dutch roll mode would be 

unstable. This situation can be corrected with the use of a yaw damper which is a 

simple form of automatic control to change the rudder deflection based on rate of 

yaw (see Ref.1.1, chapter 5 for details). 

10.3.2 Variable stability airplane 

      In some airplanes it is possible to change on ground, the feedback gains 

k1, k2, k3 etc. As a consequence of this change, the stability of the airplane can 

be altered. An airplane with such provisions is called a variable stability airplane. 

Such airplanes were built in the past and were used to study the flying qualities 

of airplanes.  
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Remark: 

 Fly-by- wire, mentioned in section 6.12, and used on current airplanes, is a later 

development of automatic control. 

10.4 Response 

To study the response of an airplane, it is helpful to know the 

mathematical technique called Laplace transform. This is discussed in the next 

subsection.  

10.4.1 Laplace transform 

 By using Laplace transform, a set of linear differential equations can be 

converted into a set of algebraic equations. This set of algebraic equations can 

be easily solved and the solution of the differential equations is obtained by 

taking the inverse transform. A brief outline of the technique is presented here. 

The description is based on Ref.1.1, Appendix ‘C’. Standard books on 

mathematics can be consulted for further details.    

Laplace transform is a mathematical operation defined by: 

-st

0

L [f(t)] = f(t) e  dt = F(s)


                                                                        (10.7)       

Here, f(t) is a function of time, L is the Laplace operator, s is a complex variable 

and F(s) is the Laplace transform of f(t).  

The inverse Laplace transform is denoted by:  

       f (t) = L-1[F(s)]                                                                                           (10.8) 

Some examples are presented below: 

(i) -a tf(t) = e        

-(a+s) t
-at -a t -s t -(a+s) t

0 0 0

e 1
L [e ] = e  e  dt = e  dt = = 

a+s s+a

   
 
 

                                                                                    

 -a t 1
i.e.,L [e ] = F (s) = 

s + a
                                                                            (10.9) 

(ii)   Note: When a = 0     Eq.(10.9) gives :                                                               

1
L[1] =

s
                                                                                                                   (10.10) 

(iii) f(t) = sin ωt  
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-st iωt -iωt -st

2 2

0 0

1 ω
L[sin ω t] = e sin ω t dt = (e -e )e  dt =

2i s +ω

 

   

2 2

ω
i.e.,L[sin ω t]  =  F(s)  =  

s +ω
                                                                      (10.11) 

iv) In a similar manner  

2 2

s
L cos ωt =

s + ω
                                                                                            (10.12) 

v) f (t) = dy / dt  

-st -st -st

0
0 0

dy dy
L [ ] =  e  dt = y e + s y e  dt

dt dt

 


 
    

-st

0

But, y e  dt = L [y (t)] = Y(s)


  

dy
Hence,L [ ] = - y (0) +  s Y(s)

dt
                 (10.13) 

vi) In a similar manner,                                                                                

n n-1
n n-1 n-2

t=0 t=0n n-1

d  y dy d  y
L [ ] = s  Y(s) - s  y (0) - s  [ ] - ... - [ ]

d t dt d t
                               (10.14) 

n-1

t=0 t=0n-1

d y d  y
if y (0) = [ ] =...= [ ]  =  0 then

dt d t
 

n
n

n

d  y
L [ ] =  s  Y(s)

d t
                  (10.15) 

vii)   
t

0

f(t)= y( )d     

t t

-st

0 0 0

Then L [ y( ) d ] = e y( ) d  dt   


                                                                                                                           

Integrating by parts, gives the following final result: 

t

0

Y(s)
L [ y( ) d ] =  

s
                                                                                     (10.16)                                                                                                                           

Remarks: 

i) Appendix ‘C’ of Ref.1.1 gives F(s) for some more functions.  
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ii) See Appendix ‘C’ of Ref 1.1 and Ch. 6 of Ref 10.2 for use of Laplace transform 

to solve ordinary differential equations. In the next subsection the use of Laplace 

transform to obtain response of a two degrees of freedom system is illustrated.    

10.4.2 Response of two degrees of freedom system to initial disturbance –  

solutions by classical method and by Laplace transform 

A simple case is considered to illustrate as to how response can be 

obtained for initial disturbance. The Two methods, namely, the classical method 

and Laplace transform technique are used. 

   In the classical method, the equations subject to initial conditions are 

solved. It will be evident later that this method becomes complex when control 

deflections are involved.  

The two methods are now explained with an example*.  

 Consider the following system with two degrees of freedom. 

      
1 1 2

3x  + 2x  + x  =  0                                                                                (10.17)            

      
1 2 2

x  + 4 x  + 3 x  = 0                                                                                          (10.18)           

The initial conditions for the stability type problem are taken as: x1 (0) = 1,                 

x2 (0) = 0. 

Remark:  

   In stability problems we take disturbance to be small. Here, x1(0) is taken as 

unity for simplicity. It could also have been taken 0.1or 0.01. 

Solution by the classical method:  

    Let the solutions be x1 = ρ1 e
λt and x2   = ρ2 e

λt. Substituting these in 

Eqs.(10.17) and (10.18), gives: 

1 1 2
3 λ ρ  + 2 ρ  + λ ρ  =  0                                                                                       (10.19) 

1 2 2
λ ρ  + 4 λ ρ + 3 ρ = 0                                                                                   (10.20)                                                                                                                                                                                       

For  a non-trivial solution of Eqs.(10.19) & (10.20) to exist, : 

                                                                                       

                        

*Taken from section 7 chapter 6 of Ref.8.3 with permission from McGraw-Hill 

Book Company. 
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3 λ + 2 λ
=  0

λ 4 λ +3
                                                                                    (10.21) 

This simplifies to 11λ2 + 17λ + 6 = 0. Which gives the roots as: λ = -1 and              

λ = - 6 / 11.  

Thus, the general solution to the chosen system is written as: 

6
- t

-t 11
1 1 2

x  = A  e  + A  e                                                                                      (10.22) 

6
- t

-t 11
2 1 2

x  = B  e  + B  e                                                                                               (10.23) 

To get the response, following the disturbance,  A1, A2, B1 and B2  should be 

evaluated. Using initial conditions the following two relations are obtained. 

   1 = A1 e
0  + A2 e

0 or A2 = 1- A1                                                                  (10.24)                                                                            

    and   0 = B1 e
0 + B2 e

0 or B1 = - B2                                                                      (10.25)                                                   

To get two more relationships,  the following arguments can be applied.  

a) Since, x1 = A1 e
-t, and x2 = B1 e

-t  are the solutions of the governing equations, 

substituting these in Eq.(10.17) gives:            

- 3 A1 e
-t + 2 A1 e

-t – B1 e
-t = 0  

Or: A1 = - B1.                                                                                                 (10.26)                                                                                         

b) Since, x1 = A2 e
- 6t/11, and x2 = B2 e

- 6t/11 are also the solutions of the governing 

equations, substituting these in Eq.(10.17) gives:            

3(- 6 / 11)A2 e
- 6t/11 + 2A2e

- 6t/11 + (- 6 / 11) B2e
-6t/11 = 0  

Or: A2 = (3 / 2)B2                                                                                           (10.27)                                                                                       

Equations (10.24) to (10.27) are the four equations for the constants A1, A2, B1 

and B2. Solving these equations yields:  

A1 = 2/5, B1= - 2/5, A2 = 3/5 and B2 = 2/5                                                     (10.28)                                                          

Hence, the response of the chosen two degrees of freedom system to the given 

disturbance is: 

6
- t

-t 11
1

2 3
x =  e  +  e

5 5
                                                                                   (10.29) 

6
- t

-t11
2

2 2
x  = e  - e

5 5
                                                                                       (10.30)                                                                                                                    
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Remark: 

Equation (10.17) was used to obtain the relations given by Eqs.(10.26) 

and Eq.(10.17). Same relations are obtained when Eq.(10.18) is used.  

 

Solution by Laplace transform: 

    Now,  the set of Eqs.(10.17) and (10.18) is solved using Laplace 

transform technique. 

   Let, L(x1) = y1 and L(x2) = y2.  

From Eq.(10.13)  L(d x1 / dt) = -x1(0) + s y1 and L(d x2 / dt) = -x2 (0) + s y2   

The initial conditions are x1( 0) = 1 and x2 (0) = 0. 

Hence, L(dx1 / dt) = -1 + s y1 and L(d x2 / dt) = s y2 

It may be noted that while taking Laplace transform the initial conditions get 

automatically incorporated. 

Taking Laplace transform of Eqs.(10.17) and (10.18) gives : 

1 1 2
3(-1 + y s) + 2 y + s y =  0                                                                         (10.31) 

1 2 2
(-1+y s) + 4sy + 3y = 0                                                                                (10.32)                                                                                                                           

Solving, Eqs.(10.31) and (10.32) yields: 

1

(11s+9)
y = ,

(s+1)(11s+6)
                                                                                        (10.33)         

   
2

2
y =

(s+1)(11s+6)
                                                                                      (10.34)                                                                                                                              

Before taking the inverse transform of Eqs.(10.33) and (10.34), they are 

simplified by using partial fractions. 

It may be noted that :  

1 1 1 1
= { - }

(s +a)(s +b) (b - a) (s +a) (s +b)
                                                         (10.35) 

(s + c) (c - a) (c - b)
= -

(s + a)(s + b) (b - a) (s + a) (b - a)(s + b)
                                                     (10.36)                                           

Hence,   
-bt -at

-1 1 e -e
L { } = 

(s+a)(s+b) a-b
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And 
-at -bt

-1 (s+c) (c - a) e -  (c - b) e
L { } =  

(s+a)(s +b) b - a
 

Applying these to Eqs.(10.33) and (10.34) and simplifying gives :  

6 6
- t - t

-t -t11 11
1 2

2 3 2 2
x = e + e and x = e - e

5 5 5 5
                     

which are the same as the solution obtained by the classical method viz. 

Eq.(10.29) and (10.30). 

Remarks: 

i)The two degrees of freedom system chosen here, has two modes 

corresponding each root. Since, both the roots are negative, the system is stable. 

Further, the roots are real and hence the response is an aperiodic motion. 

ii)The motions corresponding to the two modes and their sum are plotted 

in Figs.10.3 and 10.4. It is observed that at t = 0, x1 equals one and x2 equals 

zero, which satisfy the prescribed initial conditions.  

iii)The first mode, corresponding to e-t , has higher damping than the 

second mode, corresponding to e-6t/11. Hence, the first mode goes to zero faster 

than the second mode. However, both the modes go to zero in course of time as 

the system is stable.  
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              Fig.10.3 Response of a two degrees of freedom system – 

variation of x1 with time 

 

    Fig.10.4 Response of a two degrees of freedom system – variation of x2 with     

                         time 
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10.4.3 Response of the two degrees of freedom system to specified input 

Consider a sudden input of unit magnitude at t = 0 which subsequently 

remains constant (Fig.10.5a) . The equations of motion in this case become:  

1 1 2
3x  +  2x  +  x  =  1, t  0                                                                         (10.37)     

1 2 2
x + 4 x  + 3 x  = 0                                                                                                 (10.38) 

The initial conditions are: x1 = 0, x2 = 0 at t = 0. The solution conveniently 

obtained using the Laplace transform technique. Taking the Laplace transform of 

Eqs.(10.37) and (10.38) yields: 

1 2

1
(3s + 2) y  + s y  = 

s
                                                                                  (10.39) 

1 2
s y + (4 s + 3) y  = 0                                                                                    (10.40)                                                                                                                          

                 

                                                                                                                                

Solving Eqs.(10.39) and (10.40) gives:  

1

4 s +  3
y =  

s (s  +  1)(11s +  6)
 ,                                                                          (10.41) 

2

-1
y  = 

(s + 1) (11s + 6)
                                                                                  (10.42) 

Using Eqs.(10.35) and (10.36) and taking the inverse Laplace transform, results 

in the following solution. 

 
6

- t
-t 11

1

1 1 3
X = - e - e

2 5 10
                                                                                 (10.43) 

6
- t

-t 11
2

1
X  =  (e  - e )

5
                                                                                       (10.44)                                                                                                                                           

Remarks: 

i)The variations of x1 and x2 with time are shown in Figs.10.5b and c. It is 

observed that after some time the terms e-6t/11 and e-t tend to zero. The steady 

state values of x1 and x2 are 1/2 and 0 respectively. Thus, a control input of one 

unit results in an output of half unit for this system.  
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ii)It is interesting to note that the steady state values of x1 and x2 can be 

obtained from the original equations (Eqs.10.37 and 10.38) by noting that in 

steady state all the derivatives become zero. Thus, in steady state the left hand 

side of Eq.(10.37) is 2x1 and r.h.s equals one giving x1 = (1/2). Similarly, 

Eq.(10.38) gives that x2 = 0 in steady state.  

 

 

              

Fig.10.5 Response of a two degrees of freedom system to specified input 
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