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Chapter 9 

Dynamic stability analysis – III – Lateral motion - 1 

Lecture 33  

Topics 

9.1 Introduction 

9.2 State variable form of lateral dynamic stability equations 

9.3 Roots of stability quartic for general aviation airplane Navion 

Example 9.1 

      9.3.1 Iterative solution for lateral stability quartic 

9.4 Lateral dynamic stability analysis which includes angular displacement  

      in yaw (Δψ ) as a state variable 

9.5 Response indicated by roots of characteristic equation of lateral  

       motion- change in flight direction, roll subsidence, spiral mode and     

       Dutch roll 

 

9.1 Introduction 

       In chapter 7 the small perturbation equations for the longitudinal and lateral 

motions with controls fixed were derived. Expressions for the stability derivatives 

were also obtained. The analysis of the longitudinal dynamic stability was dealt 

with in Chapter 8. With this background, the lateral dynamic stability is briefly 

discussed in this chapter. The distinguishing features of lateral dynamic stability  

are highlighted. 

9.2 State variable form of lateral dynamic stability equation 

The equations of motion for the lateral case (Eqs.7.88, 7.89, 7.90) are 

reproduced here for ready reference. 

v 0 r 0 δr r

xz
v p r

xx

d
( -Y ) Δv - (u -Y )Δr - g cosθ  Δφ = Y  Δδ

dt

Id d
-L'  Δv + (  - L' )Δp - [  + L' ]Δr

dt I dt

                                               (7.88) 

δa a δr r
= L' Δδ + L'  Δδ                                                                                                 (7.89)           
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xz
v p r

zz

I d d
- N Δv - (  + N ) Δp - [  - N ] Δr

I dt dt
 

δa a δr r
= N Δδ +N Δδ                                                                                                   (7.90) 

  These equations can be put in the state variable form using the following steps: 

 V p 0 r 0 δr rΔv = Y  Δv + Y Δp-(u -Y )Δr + gcosθ Δφ + Y  Δδ                                    (9.1) 

 XZ
V p r δa a δr r

XX

I d
Δp = L  Δv + L  Δp +  Δr + L Δr+ L Δδ + L  Δδ

I dt
                                 (9.2) 

XZ
V p r δa a δr r

ZZ

I d
Δr = N Δv + N Δp + Δp + N Δr + N Δδ + N Δδ

I dt
                               (9.3) 

  φ Δp                                                                                                           (9.4) 

The term [d(Δr) / dt ] or Δr  occurs on the right hand side of Eq.(9.2). Its 

expression, given by Eq.(9.3), is used to replace it. The resulting equation would 

have the following term on the right hand side:  

2

xz

xx zz

I d
Δp

I I dt
 

 

Taking it to the left hand side yields:  

2

xz xz xz
v v p p

xx zz xx xx

I I Id
(1- ) Δp = (L' + N )Δv + (L' + N )Δp

I I dt I I
                                      

xz xz xz
r r δa δa a δr δr r

xx xx xx

I I I
+ (L' + N )Δr + (L' + N )Δδ  + (L' + N ) Δδ

I I I
                                      (9.5)                                                                                                                      

The following notations are introduced here (Ref.1.1, chapter 4) : 

* *v v
v v2 2

xz xz

xx zz xx zz

L' N
L = , N = , etc.

I I
(1- ) (1- )

I I I I

                                                                   (9.6) 

Use of the notations given in Eq.(9.6), renders Eq.(9.5) as: 

* * * *xz xz
v v p p

xx xx

I I
Δp = (L + N )Δv + (L + N ) Δp

I I
                                       

* * * * * *xz xz xz
r r δa δa a δr δr r

xx xx xx

I I I
+ (L + N )Δr + (L + N ) Δδ  + (L + N )Δδ

I I I
                                           (9.7)                                                                                                   

Free Hand

Free Hand



Flight dynamics –II  Prof. E.G. Tulapurkara  

Stability and control 

Dept. of Aerospace Engg., IIT Madras 4 

Similarly, eliminating p  from r.h.s of Eq. (9.3) and simplifying gives the following 

expression for Δr  : 

* * * *xz xz
v v p p

zz zz

I I
Δ r = (N + L )Δv + (N + L ) Δp

I I
                                       

             * * * * * *xz xz xz
r r δa δa a δr δr r

zz zz zz

I I I
+ (N +  L )Δr + (N  + L )Δδ  + (N  +  L ) Δδ

I I I
                  (9.8)                        

The final form of the equations for lateral motion in the state variable form is: 

 

v p 0 r 0

* * * * * *xz xz xz
v v p p r r

xx xx xx

* * * * * *xz xz xz
v v p p r r

zz zz zz

Y Y -u +Y gcosθ
Δv

ΔvI I I
L + N L + N L + N 0

Δp ΔpI I I
=

ΔrI I I
Δr N + L N + L N + L 0

ΔI I I
Δ 0 1 0 0





  
                              

                           

           

r

r

δ

a* * * *xz xz
δa δa δr δ

rxx xx

* * * *xz xz
δa δa δr δr

zz zz

0 Y

ΔδI I
+ L + N L + N

ΔδI I

I I
N + L N + L

I I

 
 
 
   
   

  
 
 
  

                                                           (9.9) 

This can be put in the form: 

X=A.X+B.η                                                                                             (9.10)                                                                                        

When the control deflections ( aδ  and rδ in the present case) are fixed, η= 0 and 

Eq.(9.10) reduces to: 

  X=A.X                                                                                                       (9.11) 

As pointed out in section 8.10, Eq(9.11) has the following solution. 

 r| λ | 0I A                                                                                                (9.12) 

Where λ r’ s are the eigen values of matrix A.  

Expanding Eq.(9.12), the following characteristic equation for the lateral motion is 

obtained. 
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            4 3 2

1 1 1 1 1A  λ + B  λ + C  λ + D  λ + E = 0                                                 (9.13)  

 

 

9.3 Roots of stability quartic for general aviation airplane (Navion)  

This section illustrates the process of setting up matrix A and then 

obtaining the eigen values.  

Example 9.1  

The general aviation airplane (Navion) discussed in example 8.1 has the 

following lateral stability derivatives (Ref.2.4, section ‘X’). 

Yv = - 0.2543 s-1,Yβ = -13.64 m s-2, Yp = 0, Yr = 0,  L’v = -0.298 m-1 s-1,                      

L’β = -15.962 s-2, L’p = - 8.402 s-1, L’r = 2.193 s-1, Nv = 0.0838 m-1s-1,                           

Nβ = 4.495 s-2 , Np = - 0.3498 s-1, Nr = - 0.7605 s-1, Ixx = 1420.9 kg m2 ,                          

Izz = 4786. 0 kg m2, Ixz = 0.  

The matrix A in Eqs.(9.9) and (9.10) in this case is  

          

- 0.2543 0 - 53.64 - 9.80665  0

- 0.298 - 8.402 2.193 0           0

= 0.0838 - 0.3498 - 0.7608 0           0

0 1 0 0           0

0                 0              1             0           0  

 
 
 
 
 
 
  

A                             (9.14) 

The eigen values of this matrix are the roots of the lateral stability quatric. Using 

MATLAB software the roots are:  

            - 0.0089, - 8.4345, - 0.4867  ± i 2.3314 

9.3.1 Iterative solution of lateral stability quartic 

   The characteristic equation (Eq. 9.13) is called lateral stability quartic. 

 Reference 1.5, part III chapter 2, contains an iterative method to solve it. The 

case of Navion is considered to illustrate the procedure. Using the stability 

derivatives in example 9.1, the following characteristic equation is obtained. 

       4 3 2λ + 9.4168λ +13.9662λ +47.9666λ+0.4258 = 0                               (9.15) 

As mentioned in section 8.5, the iterative technique, for obtaining roots of 

a quartic, depends on the relative magnitudes of the coefficients of the terms in 

Free Hand
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the polynomial. For lateral stability quartic a technique different from that used in 

section 8.5 is employed. 

It is seen that the coefficient E1 is much smaller than D1. Hence, a small 

root is expected. When the root is small, the terms with powers of λ  would be 

very small in Eq.(9.15) and the first approximation 1λ (1) can be written as: 

  (1)

1 1 1λ = - E  / D = 0.4258 / 47.9666 = 0.00888  

To get the second approximation to λ1, Eq.(9.15) is written as: 

3 2(λ+0.00888) (λ +9.4079λ +13.8827λ+47.8433)+0.003651= 0  

If 1λ (1) were the exact root, then the remainder should be zero. In this case it is 

0.003651. 

The second approximation is obtained as: 

1λ (2) = - 0.4258 / 47.8433 = - 0.0089 

Substituting in Eq.(9.15), gives: 

3 2 -6(λ+0.0089)(λ +9.4079 λ +13.8825 λ+47.8430)+2.7 × 10                         (9.16) 

Since, the remainder is very small λ1 = - 0.0089 is taken as the first root. 

To get the other three roots, the cubic part of Eq.(9.16) is now considered i.e. 

 3 2λ +9.4079λ +13.8825λ+47.843 = 0                                                           (9.17) 

To solve the Eq.(9.17), it is assumed that the second root ( λ 2) is large. Then, for 

the first approximation ( λ 2
(1)), the second and third terms in Eq.(9.17) can be 

ignored i.e. 

     3 2 (1)

2λ +9.4079λ = 0 or λ = - 9.4079 

To get the second approximation to λ2, Eq.(9.17) is divided by λ2
 and λ 2

(1) is 

substituted  in the neglected terms. This gives :     

(2)

2 2

13.8825 47.893
λ = - 9.4079- - = - 9.4728

(-9.4079) (-9.4079)
 

In a similar fashion, (3) (4)

2 2λ = - 8.4358 and λ = - 8.4345 are obtained. The last two 

values are fairly close to each other and 2λ = - 8.4345  is taken as the second 

root. 

Substituting for λ 1 and λ 2 in Eq.(9.15) leads to: 

Free Hand
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2(λ+0.0089)(λ+8.4345)(λ +0.9734 λ+5.6726) . 

Hence, the four roots are: - 0.0089, - 8.4345, -0.4867   i 2.3315  

which are almost the same as those obtained by using matrix ‘A’ and the 

MATLAB Software. 

9.4 Lateral dynamic stability analysis which includes angular displacement 

in yaw (ΔΨ) as a state variable 

 In the analysis presented in section 9.2, the quantity Δφ is included as a 

variable since, it is directly involved in Eq.(7.88). The angular displacement in 

yaw ( ) can also be included. In this case the following additional governing 

equation is obtained. 

      Δ  = r                                                                                                      (9.18) 

Reference 1.12 (chapter 6) and Ref.1.5 (chapter 7 part II) follow this approach. In 

this case Eq.(9.9) would get modified as: 

 

v p 0 r 0

* * * * * *xz xz xz
v v p p r r

xx xx xx

* * * * * *xz xz xz
v v p p r r

zz zz zz

Y Y -u +Y  gcosθ 0
Δv

ΔvI I I
L + N L + N L + N        0 0

Δp ΔpI I I

= ΔrI I I
Δr N + L N + L N + L       0 0

ΔI I I
Δ Δψ0 1 0       0 0
Δψ 0 0 1 0





  
           
  
  
  
   
    





 
 
 
 

          

           
r

δr

a* * * *xz xz
δa δa δ δr

rxx xx

* * * *xz xz
δa δa δr δr

zz zz

0 Y

ΔδI I
+ L + N L + N

ΔδI I

I I
N + L N + L

I I

 
 
 
   
   

  
 
 
  

                                                               (9.19) 

The characteristic equation corresponding to this set of equations would be :     

5 4 3 2

1 1 1 1 1
A λ  + B λ  + C λ  + D λ  + E λ = 0                                                               (9.20)                                                                                                                                  

This equation has λ = 0 as the fifth root in addition to the four roots discussed 

earlier.  
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Note:  

Similar result (i.e. a fifth degree polynomial as the characteristic equation), would 

have been obtained, if Eqs.(7.88),(7.89) and (7.90) were solved assuming :  

          Δv = ρ1e
λt, Δφ = ρ2e

λt, Δ  = ρ3 e
λt                                                        (9.21) 

9.5. Response indicated by roots of characteristic equation of lateral   

       motion – change of flight direction, roll subsidence, spiral mode and     

       Dutch roll  

    The characteristic equation for the lateral motion (Eq.9.20) has five roots. 

The motions indicated by these can be briefly described as follows. 

I) λ equal to zero root:   

From Eq.(9.21) it is observed that when, λ is zero the solution would be:   

            Δv = ρ1, Δφ = ρ2, Δ = ρ3.                                                                  (9.22) 

Substituting these in Eqs.(7.88),(7.89) and (7.90) shows that Δv equals 0 but Δφ 

and ΔΨ need not be zero. Thus the zero root, which indicates neutral stability, 

could lead to the airplane attaining a constant angle of bank (Δφ) and / or  

yaw (ΔΨ). Figure 9.1 shows a change in flight direction as a result of the zero 

root. This feature is discussed again, in section 9.6 , when the response of the 

general aviation airplane to a lateral disturbance is considered . It may be pointed 

out that appropriate control action is needed to correct the constant values of Δφ 

and Δ . 

Free Hand
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                          Fig.9.1 Directional divergence and spiral divergence            

II) Large negative root: 

It is called roll subsidence. It is heavily damped and does not pose any 

problem. 

III)  Small negative root:  

The lightly damped real root is called spiral mode.  When the root is 

positive i.e. unstable, the airplane loses altitude, gains speed, banks more and 

more with increasing turn rate. The flight path is a slowly tightening spiral motion 

(Fig.9.1). The difference between spiral motion and spin is that in the former the 

angle of attack is below stall and the control surfaces are effective. Section 10.2 

briefly deals with spin. 

  

IV) The complex root indicating oscillatory motion: 

     The motion corresponding to this root is called Dutch roll. It can be briefly 

described as follows. 

a) Let the disturbance cause roll to left. 

b) Due to adverse yaw, this roll results in yaw to right, i.e. sideslip to the 

right. 

Free Hand
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c) Because of the dihedral effect, the sideslip causes a restoring moment 

causing roll to right. 

d) Subsequently airplane yaws to left and rolls to left. 

e) This sequence of events continues and when the real part of the root is 

negative the amplitude of the oscillatory motion decreases with time.  

f)  During this oscillatory motion the airplane is all along moving forward 

(Fig.9.2). The motion is similar to the weaving motion of an ice skater. 

This mode is called Dutch roll. 

According to Wikipedia, skating repetatively to the right and to the left is 

referred to as Dutch roll. J.Hunsaker appears to be the first to refer the 

aforesaid oscillatory motion of the airplane as Dutch roll. 

 

Fig. 9.2 Dutch roll 
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Remark: 

      Dutch roll is an undesirable mode as it causes discomfort to the passengers 

in civil airplanes and may result in missing the enemy targets in military 

airplanes. It should have adequate damping.  
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