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8.14 Eigen values and Eigen vectors 

As mentioned in section 8.10, a linear set of equations can be expressed as: 

  X  = AX + Bη                                                                            (8.34)                            

Where, X is the state vector and η is the control vector. Further, in stability 

analysis, matrices A and B contain the stability derivatives. When η is zero, the 

set reduces to: 

  X  = AX                        (8.43)                            

This set of equations has the solution. 

 X = Xr e
λr t                                                    (8.44)                             

Where, λr’s are the eigen values of the matrix A. 

 

8.14.1. Eigen vector 

If λj is an Eigen values of a square matrix A, then a non-zero vector X 

which satisfies the following equation is called eigen vector corresponding to the 

eigen value λj. 

          AX = λj X                                                                                               (8.66)  

Remarks: 

i) Each eigen value has an eigen vector associated with it. 

ii) Eigen values decide the nature of the motion following the disturbance and 

eigen vectors indicate the amplitude of the response. The approach discussed in 

Free Hand

Free Hand



Flight dynamics II                                                                               Prof.E.G.Tulapurkara 
Stability and control 

Dept. of Aerospace Engg., IITMadras 

Ref.1.12, chapter 5, is used here to explain these aspects with the help of an 

example. 

Consider a two degree of freedom system governed by the following set of  

equations *.  

 
1 1 23x +2x +x = 0                             (8.67) 

1 2 2x +4x +3x = 0                              (8.68) 

By simple manipulation, this system, can be expressed in state variable form as: 

1 1

2 2

x x-8 31
=

x 2 -9 x11

    
    

    


                (8.69) 

The eigen values of the square matrix in Eq.(8.69) are given by: 

| | 0 I Aλ , where I is the identity matrix. 

Or   

8 3
λ+ -

11 11 = 0
2 9

- λ+
11 11

 

Expanding and simplifying gives: 

 11λ2 + 17λ + 6 = 0 

which has the roots, λ  = - 1, - 6/11  

The eigen vectors corresponding to these two eigen values are obtained as 

follows. 

For λ  = - 1, Eq.(8.66) gives: 

 

1 1

2 2

x x-8 31
= -1

2 -9 x x11

    
    

     
                                                                             (8.70)                                     

Or -8x1 + 3x2 = - 11 x1                                                                                                                     (8.71) 

and 2x1 - 9x2 = - 11 x2                                                                                                                      (8.72) 

Simplifying Eqs.(8.71) and (8.72) gives: 

 

 
*Taken from section 7,chapter 6 of Ref 8.3, with permission from McGraw-Hill  
Book Co. 
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            3x1 + 3x2 = 0 

  and    2x1 + 2x2 = 0 

Both of these are the same. This means that the eigen vector is not unique and 

depends on the choice of one of the two variables. Choosing x2 = 1, gives x1 = -1. 

Thus, the eigen vector corresponds to λ = -1 is 

 
 
 

T-1
or [ -1 1 ]

1
                    (8.73) 

Simplifying yields respectively: 

   - 2x1 + 3x2 = 0 

         2x1 - 3x2 = 0 

Both of these are the same. Choosing x2 = 1 gives x1 = 3/2. Hence, the eigen 

vector corresponding to λ = - 6/11 is [ 3/2 1 ]T.                                              (8.74)    

To clarify the physical significance of the Eigen values and vectors, consider the 

solution as (recall section 8.2): 

 x1(t) = ρ1 e
λt and x2 (t) = ρ2 e

λt                                                               (8.75) 

Substituting in the governing equations (i.e. Eq.8.67 and 8.68)  yields : 

   

                      3λ ρ1+ 2 ρ1+ λ ρ2 = 0 

  λ ρ1+ 4 λ ρ2+ 3 ρ2 = 0 

 Which can be expressed as: 

1 1

2 2

ρ ρ-8 31
λ =
ρ 2 -9 ρ11

    
    

    
                                      (8.76)             

Comparing Eqs.(8.69) and (8.76) it is noted that the square matrix is the 

same in both equations as it should be. Hence, the eigen values of matrix in 

Eq.(8.76) are -1 and - 6/11 and the corresponding eigen vectors are [-1  1]T and  [ 

3/2   1]T respectively. This indicates that for   λ = -1,   ρ1 = -1 and ρ2 = 1. Then, the 

first mode given by the governing equations is : 

  x1 = - e-t and x2 = e-t  

With λ = - 6/11, ρ1 = 3/2 and ρ2 = 1. Then, the second mode given by the 

governing equations is:  
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6
- t

11
1

3
x =  e

2
                                                             (8.77)     

6
- t

11
2and x = e                                 (8.78) 

From Eqs.(8.77 and 8.78) it is evident that the eigen values indicate the nature of 

the motion following the disturbance and eigen vectors indicate the amplitude of 

the response. 

Note: Actual responses of this system to a chosen disturbance and control  input 

are given in sections 10.4.2 to 10.4.4. 

8.14.2 Eigen vectors for Navion  

Examples 8.1 and 8.2 present the stability derivatives and roots of the 

characteristic equation for the general aviation airplane (Navion) flying at sea 

level at a flight velocity of 53.64 m/s. The roots are:     

Short period oscillation (SPO):- 2.508 ± i 2.577; 

Phugoid or long period oscillation (LPO):  - 0.01715 ± i 0.2135.  

To obtain the Eigen vectors for these roots the steps given in Ref.1.1, chapter 4 

are followed. 

I) In the state space variable form the state variables in this case are Δu, Δw, Δq 

and Δθ. The governing equation in matrix form are (Eq.8.40): 

          

     
     
     
     
     
      

A

  






u w

u w 0

u w u w w w q w 0

Δu X X 0 -g Δu
Δw Z Z u 0 Δw

=
Δq M +M Z M +M Z M +M u 0 Δq

0 0 1 0 ΔθΔθ

           (8.40) 

II) Following Ref.1.1, chapter 4, elements of matrix A are denoted by A11, 

A12…,A43, A44 , instead of Xu,Xw... 1, 0. Further, let a root of the characteristic 

equation be denoted by λj . Let, the eigen vector corresponding to this root be 

denoted by  [ Δuj   Δwj   Δqj   Δθj  ]
T . Then, applying Eq.(8.66) to this case yields : 
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j 11 j 12 j 13 j 14 j

21 j j 22 j 23 j 14 j

31 j 32 j j 33 j 34 j

41 j 42 j 43 j j 44 j

(λ - A )Δu - A Δw - A Δq - A Δθ = 0

- A Δu +(λ - A )Δw - A q - A Δθ = 0

- A Δu - A Δw +(λ - A )Δq - A Δθ = 0

- A Δu - A Δw - A Δq +(λ - A )Δθ = 0

                (8.79) 

In the set of equations represented by Eq.(8.79) the stability derivatives 

A11,A12..A44 and the eigen value λj are known quantities. The solution of this set 

gives the eigen vector namely Δuj, Δwj, Δqj and Δθj. As noted in the previous 

section, the eigen vector is not unique and out of its four elements,in the present 

case, three of them should be expressed in terms of the fourth one. Let, Δuj, Δwj 

and Δqj be expressed in terms of Δθj. Dividing the first three equations of 

Eq.(8.79) by Δθj and dropping the fourth equation yields: 

j 11 12 13 14
j j j

21 j 22 23 24
j j j

31 32 j 33 34
j j j

Δu Δw Δq
(λ -A ) - A -A  = A

Δθ Δθ Δθ

Δu Δw Δq
-A + (λ -A ) -A =  A

Δθ Δθ Δθ

Δu Δw Δq
-A -A + (λ -A ) =  A

Δθ Δθ Δθ

     
     
     

     
     
     

     
     
     

                (8.80) 

The set of Eq.(8.80) when solved by standard techniques yields the eigen 

vector TΔu Δw Δq
[ 1]
Δθ Δθ Δθ

. 

The results are presented in Table 8.2. The following may be noted. 

(a) In table 8.2 the Eigen vectors are in non-dimensional form i.e.  

0 0 0Δu / u Δw / u Δ[qc/(2u )]
, ,

Δθ Δθ Δθ
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Eigen vector 

element 

Long period oscillation Short period oscillation 

 λ = - 0.01709 ± i 0.2124  λ = - 2.5085 ± i 2.5931 

0Δu/u
Δθ

 
- 0.1194 ± i 0.8437 0.0328  ±  i 0.0235 

0Δw/u
Δθ

 
0.008136 ± i 0.05027 1.139  ±  i 0.7574 

0Δ[qc/(2u )]
Δθ

 
- 0.0002767 ± i 0.00344 - 0.0406  ±  i 0.04198 

 

Table 8.2 Eigen vector for general aviation airplane - longitudinal motion 

 

(b) The elements of eigen vector are complex as the roots are complex. The 

elements of the eigen vectors give idea about the relative magnitudes of the 

motion variables in the corresponding mode. When these ratios are complex 

numbers, as happens in the present case, they can be plotted in a vector or 

Argand diagram. Figure 8.9a and 8.9b present the information for LPO and SPO. 

From Fig.8.9a and Table 8.2 it is observed that the real parts of 

0 0Δw/Δu Δ(qc / 2u )
and

Δθ Δθ
 are very small and are not seen in the diagram.  

The magnitude of 2 20Δu/u
is 0.1194 +0.8437

Δθ
  or 0.8521.                                                        

The phase of  0Δu/u
Δθ

 is given by tan-1(-0.8437/0.1194) = 98.050  
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Table 8.9a Argand diagram for Eigen vectors of LPO 

 

 

 

Table 8.9b Argand diagram for Eigen vectors of SPO 
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From Fig.8.9b and table 8.2, it is seen that for SPO 0Δu/u
( )

Δθ
and  0Δqc / 2u

( )
Δθ

              

are very small.  But, 0Δw/u
( )

Δθ
 has magnitude of  2 21.139 +0.7574 =1.3678                      

and phase of -1 00.7574
tan = 33.62

1.139
.  

From the above discussion the following conclusions can be drawn. They were 

also drawn earlier, while simplifying the equations for LPO and SPO in section 

8.11.  

(i)  The SPO is characterized by negligible changes in flight speed. The 

angle of attack oscillates with amplitude and phase not significantly 

different from Δθ. 

(ii)  As regards LPO, the changes in Δq and Δα are very small.  Δu has 

significant magnitude and leads Δθ by about 900.  

8.15 Longitudinal stick-free dynamic stability 

    While defining the degrees of freedom it was mentioned that they are the 

number of coordinates needed to prescribe the position of any point on the 

system. A rigid airplane with controls fixed has six degrees of freedom viz. the 

three coordinates of the c.g. with respect to a ground fixed axis system and three 

Eulerian angles. When the elevator is free to rotate about its hinge, an additional 

degree of freedom is introduced i.e. to describe the position of a point on the 

elevator, the elevator deflection (δe) needs to be prescribed; note that the 

elevator is still assumed to be rigid.   

    The rotation of the elevator causes changes in the aerodynamic forces 

and the moments about the c.g.. Noting that (Mcg)δe = Mδe Δδe + eM  e   . The 

third of the governing equations (Eq.7.87) becomes: 

 

                                                     (8.81) 

 




2

u w w q δe e e2 δe

d d d
- M Δu - (M +M )Δw + ( - M )Δθ - M Δδ  + M Δδ  

dt dt dt
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The new equation for the motion of elevator about it’s hinge would look like (See 

Ref.1.7, chapter 10).  

e e
e e

H H H H H H
Δu + Δα + Δδ + Δθ+ Δα+ δ

u α δ α δθ

     
    

            

  e e e e 0 0 t= I (θ+δ )+m x (u α - u θ + θ)    l                                                            (8.82) 

Where, H = hinge moment, me = mass of the elevator, Ie = moment of inertia of 

the elevator and xe = distance of elevator c.g. behind the hinge line. 

Thus, the system of equation with elevator free will consists of four governing 

equations namely Eqs.(7.85), (7.86), (8.81) and (8.82). 

The characteristic equation for this set of equations would be of the form:              

Aλ6 + Bλ5  + Cλ4 + Dλ3 + Eλ2 + Fλ + G = 0.                                                    (8.83)  

where, G depends on  (dCm /dCL)stick-free.   

It is found that the six roots of Eq.(8.83) form three complex pairs. Out of 

these three pairs, the first two represent SPO and LPO. They have been 

discussed earlier. The third oscillatory mode represents the oscillation of the 

elevator about its hinge. The time period of this motion is about two seconds. 

This may sometimes lead to undesirable response of the airplane. The reason is 

as follows. 

The response time of the pilot is about one second. Hence, the action of 

pilot, in response to an oscillatory motion with time period of two seconds, may 

reinforce the motion instead of correcting it. This may lead to instability. Proper 

damping of this mode is necessary. Section 10.6 of Ref.1.7 be consulted for 

further details.  

Self study topic: 

Handling characteristics of airplane. (These are discussed in Ref.1.1, at 

the end of chapter 4). 
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