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Chapter 8  

Dynamic stability analysis – II – Longitudinal motion - 3 

Lecture 30 

Topics 

8.10 Equations of motion in state space or state variable form 

8.11 Approximations to modes of longitudinal motion 

    8.11.1 Approximation to SPO 

    8.11.2 Approximation to LPO 

 

8.10 Equations of motion in state space or state variable form 

The governing equations for the longitudinal motion (Eqs.7.85, 7.86 and 

7.87) are ordinary differential equations with constant coefficients. When such 

equations are written as a system of first order differential equations, they are 

called state space or state variable equations and are written as:  

X A. X +B. η                                   (8.34)                            

where, X is the state vector, η is the control vector and the matrices A and B 

contain stability derivatives. The steps for expressing the governing equations of 

longitudinal motions in state space variable form are as follows.  

The equations of motion are reproduced below for ready reference. 

 ( u w 0 δe e δT T

d
 - X )Δu - X  Δw + g cosθ  Δθ = X  Δδ + X  Δδ

dt
                               (7.85) 

  u w w 0 q 0

d d
- Z Δu + [(1-Z ) - Z ]Δw-[(u + Z ) - g sinθ ] Δθ

dt dt
 

 δe e δT T=  Z  Δδ +  Z  Δδ                                                                                             (7.86) 



2

u w w q2

d d d
- M  Δu - (M +M ) Δw + (  - M ) Δθ

dt dt dt δe e δT T=  M  Δδ  +  M  Δδ          (7.87)                               

To bring out the essential ideas of the state variable form, a simpler set of 

equations is used. It is assumed that (a) θ0 is zero i.e. the undisturbed flight is a 

level flight and (b) wZ   and qZ  are taken as zero. 

The aforesaid set of equations (i.e.Eqs.7.85 to 7.87) now reduces to : 
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u w δe e δT T

d
 - X )Δu - X  Δw + g Δθ = X  Δδ + X  Δδ

dt
(                                        (8.34a) 

u w 0 δe e δT T

d d
- Z Δu +  [ -  Z ]Δw - [(u )] Δθ =  Z  Δδ +  Z  Δδ

dt dt
                            (8.34b) 

2

u w w q δe e δT T2

d d d
- M  Δu - (M +M ) Δw + (  - M ) Δθ =  M  Δδ  +  M  Δδ

dt dtdt
         (8.34c) 

It is observed that the third equation in the above set (i.e. Eq.8.34 c) involves 

second derivative of Δθ. But, the state variable form of the equations has only the 

first derivative of the dependent variables. To overcome this difficulty, 
2

2

d θ

dt

 
 
 

 is 

expressed as Δq and an additional equation, Δθ = Δq  is introduced. Then, the 

set of Eqs.(8.34a) to (8.34c), after some rearrangement, is expressed as:                                         

  u w δe e δT TΔu = X  Δu + X  Δw + 0 Δq - gΔθ + X Δδ + X  Δδ                   (8.35) 

u w 0 δe e δT TΔw = Z  Δu + Z Δw + u  Δq +(0)Δθ + Z Δδ  + Z Δδ                             (8.36) 

 
u w w q δe e δt TΔq = M Δu + M Δw + M Δw + M Δq + (0)Δθ + M Δδ  + M Δδ             (8.37) 

Δθ = Δq                              (8.38)                            

It is observed that Eq.(8.37) of this set involves the derivative of Δw on the right 

hand side. This again is not in accordance with the state variable representation 

(i.e. Eq.8.34). To overcome this difficulty, Δw  in Eq.(8.37) is replaced by its 

expression as given by Eq.(8.36). Consequently, Eq.(8.37) is rewritten as : 

u w u w 0

δe e δt T w q δe e δt T

q = M Δu + M Z Δu + Z Δw + u Δq + (0)Δθ

+ Z Δδ + Z Δδ + M Δw + M Δq + M Δδ  + M Δδ

  {

}
 

  

 


u w u w w w q w 0

δe w δe e δt w δt T

Or Δq = (M +M Z )Δu +  (M +M Z )Δw+(M +M u )Δq

+(0)Δθ+(M +M Z )Δδ +(M +M Z )Δδ
                  (8.39) 

Equations (8.35), (8.36), (8.39) and (8.38) are the alternate form of the governing 

equations for the longitudinal motion. These can be written in matrix form as: 
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u w

u w 0

u w u w w w q w 0

X X 0 -gΔu Δu

Z Z u 0Δw Δw
=

M + M Z M +M Z M +M u 0Δq Δq

ΔθΔθ 0 0 1 0

    
    
    
    
    

        

  






                          

                  
e

δe δT
e

δ δT
T

δe w δe δT w δT

X X
Δδ

+ Z Z
Δδ

M +M Z M + M  Z

 
   
   

  
  

                                             (8.40)                            

 

 i.e., whereX = A.X +B.η                      

   
                  
    






e

T

Δu Δu
Δw ΔδΔw

= , = , = ,
Δq ΔδΔq

ΔθΔθ

X X η                                                              (8.41) 

                                                           

 
 
 
 
 
  

  

u w

u w 0

u w u w w w q w 0

X X 0 -g
Z Z u 0

=
M +M Z M +M Z M +M u 0

0 0 1 0

A                

 

 

   

 
 
 
   

e T

e T

e w e T w T

X X
Z Z

M +M Z M +M Z
B =                                                                        (8.42) 

 

Remarks:  

i) The quantities Δu, Δw, Δq and Δθ are called state variables and Δδe and Δδt 

are called control variables.  

ii) When η = 0, Eq.(8.41) reduces to:  

       X  = A. X.                                                                                                 (8.43) 

This set of equations has a solution: 

      rλ t
r eX X                                                         (8.44)                            

Substituting Eq.(8.44) in Eq.(8.34) gives: 
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 r(λ ) 0rI A X                     (8.45) 

Where, the identity matrix I in this case is:  

 
 
 
 
 
 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

I                                                                                                     (8.46) 

For a non-trivial solution to exist:  

    |λr I - A| = 0.                                                                                                (8.47) 

Thus, λ r’s are the eigen values of matrix A. These are also the roots of the 

characteristics equation (Eq.8.9). Thus, the roots of the characteristic equation 

can be obtained by finding out the eigen values of matrix A using packages like 

Mathematica, Matlab etc. 

i) For the general aviation airplane of example 8.1, the matrix A is : 

- 0.045 0.036 0 - 9.80665

-  0.369 -  2.02 53.64 0
=

0.00612 - 0.1298 - 2.9862 0

0 0 1 0

 
 
 
 
 
 

A  

The roots of the equations using Matlab are: 

-2.5085 ± i 2.5931 

-0.01709 ± i 0.2124 

which are almost the same as those obtained by the iterative procedure in 

example 8.2. 

 

8.11 Approximations to modes of longitudinal motion 

The response of an airplane to disturbances, discussed in section 8.9, 

shows that the changes in Δα or Δw take place in the first few moments of the 

disturbed motion. During this, the changes in Δu are negligible. In the 

subsequent motion, the angle of attack remains fairly constant and the velocity 

changes in a periodic manner. This change in velocity is accompanied by a 

change in the altitude of the airplane. This implies a gradual exchange between 

the kinetic energy and potential energy. These observations suggest that the 

Free Hand
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analysis of SPO and LPO can be done by making simplifying assumptions. 

These simplified analyses are called approximations to SPO and LPO.  

 

8.11.1 Approximation to SPO 

From the aforesaid discussion the analysis of SPO is simplified by 

assuming that Δu is zero during this phase of motion. This results in the following 

simplifications. 

a) In the set of governing equations (Eqs.7.85 to 7.87) the equation 

corresponding to X-force i.e. Eq (7.85) can be dropped. 

b) From the other two equations the terms multiplied by Δu can be ignored.  

c) Writing Δθ  as Δq, the following set of two equations is obtained. 

w 0

d
Δw-Z Δw-u Δq = 0

dt
                  (8.48) 

 w w w q w 0

dq
- (M +M Z )Δw - (M +M u ) Δq = 0

dt
                 (8.49) 

  or w 0

w w w q w 0

Z uΔw Δw
 =  

M +M Z M +M uΔq Δq

    
    

     


                                (8.50)                            

Now, Δw can be replaced by u0 Δα .  

Further,       
  
  

0
α 0 w

yy yy 0 yy

u1 M 1 M M
M = = = = u  M

I α I (Δw/u ) I w
                               (8.51)                            

Similarly, Zα = u0 Zw and 0 wM = u M  . Substituting these, the simplified equations 

for SPO become: 

       

 
                   

 
 





α

o

α
α α q α

0

Z
1Δα

u Δα
=

Z Δq
(M +M ) M +MΔq

u

                 (8.52) 

The characteristic equation for this mode can be obtained from |λI - A| = 0 or 

         

α

0

α
α α q α

0

Z
λ- -1

u
= 0

Z
-M -M λ-(M +M )

u
 

                 (8.53) 

Free Hand
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Expanding this, gives: 

2 α α
q α q α

0 0

Z Z
λ -  (M +M + )λ +  (M -M ) = 0

u u
                  (8.54) 

Solving Eq.(8.54) yields: 

 
2 1/2α α α

SPO q α q α q α
0 0 0

Z Z Z1
λ = [ {M +M + } ± {(M +M + ) -4(M -M )} ]

2 u u u
                 (8.55)  

Remark: 

Substituting in Eq.(8.55), the values of stability derivatives for the airplane 

in example 8.1, gives :  

λSPO = - 2.503 ± i 2.594 whereas the exact roots  for SPO are -2.508 ± i 2.577. 

 

8.11.2 Approximation to LPO  

Here, it is assumed that Δα or Δw/u0 is small and changes occur only in 

Δu and Δθ. Changes in dθ/dt are also slow. Hence, the moment equation i.e. 

Eq.(7.87) is ignored. Retaining only Δu and Δθ in the remaining equations of 

motion, gives:  

u

d
(  - X )Δu + g Δθ = 0

dt
                   (8.56) 

u 0

d
- Z  Δu - u Δθ = 0

dt
                                                                                             (8.57) 

Or 

  
   
          





u

u

0

X - g
Δu Δu

= - Z
0 Δθ

Δθ u

                                                                             (8.58)                            

The characteristic equation for this mode is obtained from |λI - A| = 0 or 

u

u

0

λ-X g
0Z

λ
u

            

Or 2 u
u

0

Z g
λ -X λ+ = 0

u
                                      (8.59) 

2 1/2u
LPO u u

0

Z g1
λ = [ X  ± { X - 4 } ]

2 u
                          (8.60)             

Free Hand
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Remarks: 

i) Substituting in Eq.(8.60) the values of the stability derivatives for the airplane in 

example 8.1, gives :  

λLP0 = - 0.0225 ± i 0.257 as compared to the exact value of  - 0.01715 ± i 0.2135  

ii) From Eq.(8.60) the damping of LPO is ½ Xu.  

It may be recalled that  

  D
u

0

2 Q S C
X =  - 

m u
               (8.61)                     

Hence, damping of phugoid depends on CD. Thus, a streamlined airplane has 

lower damping. 

iii) The frequency of phugoid depends on  

2 1/2u
u

0

Z  g1
{X  - 4 }

2 u
 

Since, 2
uX  is much smaller than (4Zu g / u0) the frequency (ωLPO) is roughly equal 

to (-Zu g /u0)
1/2  

 

Recall that: 

L
u

0 0 0

2QSC 2QS 2mg 2g
Z = - =- × = -

mu mu QS u
                 (8.62) 

Hence, the frequency of phugoid is given approximately by:  

LP0
0

g
ω 2

u
                                                                                                  (8.63) 

Thus, the period of phugoid is proportional to flight speed (uo) or the period is 

longer at higher flight speeds. This result is the same as arrived at in subsection 

8.9.1. 

Free Hand
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