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8.10 Equations of motion in state space or state variable form

The governing equations for the longitudinal motion (Eqs.7.85, 7.86 and
7.87) are ordinary differential equations with constant coefficients. When such
equations are written as a system of first order differential equations, they are
called state space or state variable equations and are written as:
X =A.X+B.n (8.34)
where, X is the state vector, n is the control vector and the matrices A and B
contain stability derivatives. The steps for expressing the governing equations of
longitudinal motions in state space variable form are as follows.

The equations of motion are reproduced below for ready reference.

(% - X,)Au - X, Aw + g cos, AB = X, AS_+ X, A5, (7.85)

- Z,Au + [(1-zw)%- Z., 1Aw-[(u, + zq)%- g sing,] AB

= 7, NS, + Z,. IS, (7.86)

2
-M, Au - (MW£+MW)AW + (d—2 -M i)Ae = M,, Ad, + M, Ad; (7.87)
dt dt 4 dt
To bring out the essential ideas of the state variable form, a simpler set of
equations is used. It is assumed that (a) 8o is zero i.e. the undisturbed flight is a

level flight and (b) Z,, and Z, are taken as zero.

The aforesaid set of equations (i.e.Eqs.7.85 to 7.87) now reduces to :
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(% “X)Au-X, Aw +g A8 = X, A+ X, AB, (8.34a)
d d _
“Z,8u + [ ZJAW-[(Uy S 108 = Zy, A5, + Zyy BB, (8.34b)
M A M d+|\/| Aw + d M d AB = M AS. + M., Ad 8.34
- W U-( v‘va w) w (F_ qa) - de e 5T T ( . C)

It is observed that the third equation in the above set (i.e. Eq.8.34 c) involves

second derivative of AB. But, the state variable form of the equations has only the

2
first derivative of the dependent variables. To overcome this difficulty, (%) is

expressed as AQ and an additional equation, NS = Aq is introduced. Then, the

set of Egs.(8.34a) to (8.34c), after some rearrangement, is expressed as:

AU = X, Au+ X, Aw + (0)Aq - gAB + X A + X, AS, (8.35)
AW = Z, Au+Z Aw + u, Ag +(0)A8 + Z,, AD, + Z,, AD, (8.36)
AG = M,Au + M AW + M, Aw + M, Aq + (0)A8 + M, A3, + M, A5, (8.37)
A6 = Aq (8.38)

It is observed that Eq.(8.37) of this set involves the derivative of Aw on the right
hand side. This again is not in accordance with the state variable representation
(i.e. EQq.8.34). To overcome this difficulty, Aw in Eq.(8.37) is replaced by its
expression as given by Eq.(8.36). Consequently, Eq.(8.37) is rewritten as :
AQ=M,Au+M, {Z Au+Z,6 Aw + u, Aq + (0)AB

+Zy, AS + Zy Ad }+ M, Aw + M Aq + M, AS, + M, A,
Or Aq = (M,+M,Z)Au + (M, +M,Z,)Aw+ (M, +M,u,)Aq

+(0)A6+ (M, + M, Z5 )AD, + (M, + M, Z5, )AD,

Equations (8.35), (8.36), (8.39) and (8.38) are the alternate form of the governing

equations for the longitudinal motion. These can be written in matrix form as:

(8.39)
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AU X, X, 0 -9l Au
Aw | Z, Z, U 0 || Aw
Ag | (MAMZ, M AMZ, M +Mu, O || Aq
;) 0 0 1 01| A®
X
+ z:e z: {Aée} (8.40)
. AS.

M6e+MWZ6e M6T+ Mw ZBT

i.e.,X = A.X +B.n where

AU Au
. AW AD
X=|""x=|2n=|2%]|, (8.41)
Aq Aq AJ,
AB AB
X, X, 0 -g
A = Z, Z, U, 0
- IM,+M,Z, M +M.Z, M, +Myu, O
0 0 1 0
Xée X(ST
B = Z Z (8.42)

oe 5T

M(Se + MWZ(Se M(ST +Mv’va‘T

Remarks:

i) The quantities Au, Aw, Aq and A8 are called state variables and Ad. and Ad;
are called control variables.

i) When n =0, Eq.(8.41) reduces to:

X =A.X (8.43)
This set of equations has a solution:
X =X eM (8.44)

Substituting Eq.(8.44) in Eq.(8.34) gives:
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(AN-A)X =0 (8.45)
Where, the identity matrix I in this case is:
1000
I 0100 (8.46)
0 010
0 001

For a non-trivial solution to exist:

A1 -A|=0. (8.47)
Thus, A /’s are the eigen values of matrix A. These are also the roots of the
characteristics equation (Eq.8.9). Thus, the roots of the characteristic equation
can be obtained by finding out the eigen values of matrix A using packages like

Mathematica, Matlab etc.

i) For the general aviation airplane of example 8.1, the matrix Ais :
- 0.045 0.036 0 - 9.80665
| -0.369 - 2.02 53.64 0
0.00612 - 0.1298 - 2.9862 0
0 0 1 0

The roots of the equations using Matlab are:

-2.5085 +i2.5931

-0.01709 £i 0.2124

which are almost the same as those obtained by the iterative procedure in

example 8.2.

8.11 Approximations to modes of longitudinal motion

The response of an airplane to disturbances, discussed in section 8.9,
shows that the changes in Aa or Aw take place in the first few moments of the
disturbed motion. During this, the changes in Au are negligible. In the
subsequent motion, the angle of attack remains fairly constant and the velocity
changes in a periodic manner. This change in velocity is accompanied by a
change in the altitude of the airplane. This implies a gradual exchange between

the kinetic energy and potential energy. These observations suggest that the
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analysis of SPO and LPO can be done by making simplifying assumptions.

These simplified analyses are called approximations to SPO and LPO.

8.11.1 Approximation to SPO

From the aforesaid discussion the analysis of SPO is simplified by
assuming that Au is zero during this phase of motion. This results in the following
simplifications.
a) In the set of governing equations (Eqs.7.85 to 7.87) the equation
corresponding to X-force i.e. Eq (7.85) can be dropped.

b) From the other two equations the terms multiplied by Au can be ignored.

c) Writing A8 as Aq, the following set of two equations is obtained.

%AW-ZW Aw-u,Aq =0 (8.48)

d

d—f -(M,+M,, Z, )Aw - (M, +M, u,) Aq = 0 (8.49)
AW Z u A

or |[°V] = v 0 W (8.50)
Aq MW +MWZW I\/Iq +Mwuo Aq

Now, Aw can be replaced by up Aa .

Futher, M, =—M_1_M _uM_, (8.51)

|, o(Awlu,) 1 ow

o, da
Similarly, Zq = upZy and M, = u,M,,. Substituting these, the simplified equations
for SPO become:

. Z
Aa — 1
u

o

Aa
e o
AG| | (MM, Z=) M +M, |E59
Uy

The characteristic equation for this mode can be obtained from |Al - A| =0 or

£Za -1
uO
. =0 (8.53)
MM, ZE MM M)
uO
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Expanding this, gives:

A% - (Mq+Md+%))\ + (M Z=-M.)=0 (8.54)

0

Solving Eq.(8.54) yields:

Aoro = LM M2 & (M SV 02 M, 2, ) (8.55)
Remark:

Substituting in Eq.(8.55), the values of stability derivatives for the airplane
in example 8.1, gives :

Aspo = - 2.503 + i 2.594 whereas the exact roots for SPO are -2.508 +i 2.577.

8.11.2 Approximation to LPO

Here, it is assumed that Aa or Aw/ug is small and changes occur only in
Au and AB. Changes in do/dt are also slow. Hence, the moment equation i.e.
Eq.(7.87) is ignored. Retaining only Au and A8 in the remaining equations of

motion, gives:

(% -X,)Au +g AB = 0 (8.56)
d
-Z, Bu-u, A0 =0 (8.57)
Au X, -9 Au
Oor o EEA (s (8.58)
AB

0

The characteristic equation for this mode is obtained from |Al - A| =0 or

A-X, g
2, AT 0
uO
or M-x A+ 29 = g (8.59)
uO
Npo = 2i[xu +{X;- 4 @}1/2] (8.60)
uO
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Remarks:

i) Substituting in Eq.(8.60) the values of the stability derivatives for the airplane in
example 8.1, gives :

ALpo = - 0.0225 +i 0.257 as compared to the exact value of - 0.01715£i0.2135
ii) From Eq.(8.60) the damping of LPO is 72 X,.

It may be recalled that

2QSC,

Xu=_
m u,

(8.61)

Hence, damping of phugoid depends on Cp. Thus, a streamlined airplane has
lower damping.

i) The frequency of phugoid depends on

1 {Xﬁ _4 Zu 9}1/2

2 U,

Since, X? is much smaller than (4Z, g / uo) the frequency (w.po) is roughly equal

to (-Zy g /ug)'?

Recall that:

7, = _2QSC_ _ 2QS 2mg _ 29 (8.62)
mu, mu, QS U

Hence, the frequency of phugoid is given approximately by:

Wip # V2 u& (8.63)

0
Thus, the period of phugoid is proportional to flight speed (u,) or the period is
longer at higher flight speeds. This result is the same as arrived at in subsection
8.9.1.
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