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8.5 Iterative solution of the characteristic equation 

The characteristic equation for the stick-fixed longitudinal motion, given 

above, is a fourth degree polynomial. It may be noted that the exact solutions for 

polynomial equations are available only up to polynomials of degree three. 

Hence, in the present case, with fourth degree polynomial, an iterative procedure 

is adopted to obtain the solution. Further, the iterative technique, to be used for a 

fourth degree polynomial, depends on the relative magnitudes of the coefficients 

of the terms in the polynomial. The characteristic equation of the longitudinal 

motion generally has the following features. 

(a) The coefficient of λ4 is unity.  

(b) The coefficients of λ3 and λ2 are much larger than the coefficient of the λ and 

the constant term (see values of B, C, D and E in Eq.8.18).  

Reference1.5 Appendix 4, gives the following iterative procedure for solving 

polynomial like in Eq.(8.18). 
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Let, 4 3 2f(λ) = λ  + Bλ  + Cλ  + Dλ + E                           (8.19) 

Now, f(λ) can be expressed as a product of two quadratics i.e.: 

2 2f(λ) = (λ  + bλ + c) (λ  + λ + δ)                               (8.20)     

Expanding R.H.S. of Eq.(8.20)  and comparing coefficients of terms in Eqs. 

(8.19) and (8.20) gives the following equations. 

b + = B

c + b + δ = C

bδ + c = D

cδ = E






                                          (8.21) 

Since, the coefficients D and E are generally much smaller than ‘B’ and ‘C’ , the 

quantities   and δ in Eq.(8.21) are much smaller than ‘b’ and ‘c’ . Hence, the first 

approximations of b,c,δ  and , denoted by b1, c2, 1δ  and 
1
  are written as : 
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Hence,    2 2
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C C
                              (8.23)                                                                                                  

The roots of the two quadratics in Eq.(8.23) are obtained.  

 For the second approximation, b2, c2 , 2δ , and 
2
  are expressed as: 

2 1

2 1 1 1

2 2
2 2

2

2

2

b B - 

c C - b - δ

c D - b E

c

E
δ =

c











                                                                                            (8.24) 

The roots of the quadratics obtained using b2 , c2, 2
  and δ2 are also worked 

out.The procedure is continued till the roots obtained in the two consecutive 

approximations do not change  significantly in their values.             
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Example 8.2  

An application of the iterative procedure for the characteristic equation for 

the case considered in example 8.1 is described below.  

From Eq.(8.18): A = 1, B = 5.05, C = 13.15, D = 0.6735 and E = 0.593.  

From the set of equations in Eq.(8.22) the first approximation is : 

b1 = 5.05, c1 = 13.15, δ1 = (0.593/13.15) = 0.0451, and  

γ1 = (13.15 x 0.6735 - 5.05x0.593) / 13.152 = 0.0339 

Thus, f(λ) ≈ (λ2+5.05λ+13.15) (λ2 + 0.0339λ + 0.0451)  

The roots of the two quadratics are: 

λ1,2 = -2.525 ± i 2.602, λ3,4 = -0.01695 ± i 0.2117  

From the set of equations in Eq.(8.24) the second approximation is: 

b2 = B - γ1 = 5.05 – 0.0339 = 5.0161.  

Similarly, c2=12.934, γ2 = 0.0343 and δ2 = 0.0458.  

The roots of the quadratic obtained using b2, c2, γ2 and δ2 are:  

   λ1,2 = -2.508 ± i 2.578 , λ3,4 = -0.01715 ± i 0.213 

Carrying out the iteration once more, the roots after the third approximation are:  

        λ1,2 = -2.508 ± i 2.577,  

        λ3,4 = -0.01715 ± i 0.2135. 

The values of the roots do not seem to change significantly from the second to 

the third iteration and the iterative procedure can be stopped.  

Remarks:  

i) In section 8.10 the equations of motion are expressed in state space 

variable form and then the roots of the characteristics equation are 

obtained by using commercially available computational packages like 

Matlab. 

ii) It is observed that the four roots of the characteristic equation for the 

given flight condition, consist of two pairs of complex roots. The real parts 

of both the roots are negative and hence the airplane has dynamic 

stability for the given flight conditions and configuration. A discussion on 

the modes of longitudinal motion is given in section 8.9. 
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8.6 Routh’s Criteria 

 Presently, the roots of the stability quartic are obtained by the iterative 

procedure described above or by using packages like Matlab. However, earlier 

the tendency was to look for elegant analytical / approximate solutions. Routh’s 

criteria is a method which indicates whether a system is stable without solving 

the characteristic equation. The criteria is presented without giving the 

mathematical proof. 

A quartic Aλ4 + Bλ3 + Cλ2 + Dλ + E = 0 will have roots indicating stability 

i.e. real roots negative and complex roots with negative real part when A>0 and 

the functions T1,T2, T3  and T4, given below, are positive.  
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                                            (8.25) 

 

In the case of longitudinal stability quartic with A = 1, the criteria simplify to:  

  B > 0 ; D > 0; E > 0 and  

  R = T3 = BCD - B2E - AD2 > 0                     (8.26)                                                                         

The term ‘R’ is called Routh’s discriminant. 

The reader can verify that for the stability quartic given by Eq.(8.18), the value of 

R is positive. 

8.7 Damping and rate of divergence when roots are real 

As mentioned earlier, when a root is real and non-zero, a negative root 

indicates subsidence and a positive root indicates divergence. Larger the 

magnitude of the negative root, faster will the system return to the undisturbed 
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position. This is clear from Eq.(8.15), which shows that the response of the 

system corresponding to the root λ1 is 11 1λ  te . At t = 0, the amplitude of the 

response is 11 . Further, when 1λ  is negative, the term 1λ  te  indicates that the 

amplitude would decrease exponentially with time (Fig 8.1b). The time when the 

amplitude decreases to half of its value at t = 0, is a measure of the damping. 

This time is denoted by t1/2. This quantity (t1/2) is obtained from the following 

equation.  

For the sake of generality the root is denoted by λ  instead of 1λ . 

    

                1/2t  λ 1
e =

2
 

       Or     1/2t = (ln2) / λ = 0.693 / λ                                                                    (8.27)   

When the root is positive, the amplitude increases exponentially with time  

(Fig 8.1a). The time when the amplitude is twice the value at t = 0, is a measure 

of divergence. This time is denoted by t2. This quantity (t2) is obtained from the 

following equation. 

              2t  λe = 2;  ; Note λ is positive  

       Or      t2 = (ln 2) / λ = 0.693 / λ                                                                (8.28) 

 

8.8 Damping, rate of divergence, period of oscillation and number of cycles 

for half amplitude when the roots constitute a complex pair 

 A complex root is usually written as:  

           λ = η ± iω  

When η is negative, the response is a damped oscillation. The damping is 

characterized by the time when the quantities ηte  becomes half. This time is 

denoted by 1

2

t .  Consequently , 

             
1

2

η t

e = 0.5  

               Or     (ln 2)1/2t = / η = 0.693/ η                                                                (8.29)  
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When η is positive, the response is a divergent oscillation. The time when the 

term ηte  equals two is a measure of the rate of divergence. This time is denoted 

by t2. It is easy to show that : 

              2t = ln 2 /η = 0.693/η                                                                               (8.30)   

The time period of the oscillation (P) is given by  

              P = 2π / ω                                                                                                   (8.31) 

When η is negative, the number of cycles from t = 0 to t1/2  is denoted by N1/2   

and equals: 

              1/2 1/2N = t  / P                                                                                               (8.32) 

Similarly, when η  is positive, the number of cycles from t = 0 to t2 is denoted by 

N2 and equals: 

                2 2N = t  / P                                                                                       (8.33) 

Example 8.3 

Applying the above formulae, the quantities t1/2 , P, N1/2 corresponding to the 

two roots obtained in example 8.2 are:  

a)   λ1,2 = -2.508 ± i 2.578:  

t1/2 = 0.693/2.508 = 0.276 s,    

      P = 2π /2.578 = 2.436 s, N1/2 = 0.276 / 2.436 = 0.113 cycles  

 

b)  λ3,4 = - 0.01715 ± i 0.2135:  

     t1/2 = 0.693 / 0.01715 = 40.4s 

     P = 2π / 0.2135 = 29.4 s, N1/2 = 40.4 / 29.4 = 1.37 cycles  

8.9 Modes of longitudinal motion – short period oscillation (SPO) and long 

period oscillation (LPO) / phugoid   

The motions represented by the different roots of the characteristic 

equation are called the corresponding modes. For the longitudinal motion the 

characteristic equation generally has two complex roots. One of them has a short 

time period and is heavily damped (refer to examples 8.2 and 8.3). This mode is 

called short period oscillation (SPO). The other mode has a long time period and 

low damping (refer to examples 8.2 and 8.3).This mode is called long period 
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oscillation(LPO). Because of low damping it takes a long time to subside or die 

down. However, when the period is long, the pilot has enough time to take 

corrective action to restore equilibrium. This mode is also called phugoid. To 

appreciate the features of these two modes, the response of Navion to a 

disturbance, as given in Reference 1.12, chapter 6 is presented in Figs.8.3a & b 

and 8.4 a & b.The disturbance consists of Δα = 50 and 0Δu = 0.1u = 17.6 ft s -1 or 

5.364 ms-1.  

     Figures 8.3 a and b show the changes, with time, in the angle of attack 

(Δα) and pitch rate (q). Figures 8.4 a and b show the changes, with time, in the 

perturbation velocity (Δu) and the pitch angle (Δθ). Note that Fig.8.3 shows the 

initial response to disturbance i.e. up to t = 20 s whereas Fig.8.4 shows the 

response up to t = 200 s. It may also be pointed out that the solid curves in             

Figs.8.3 and 8.4 represent the response of the airplane when the full set of 

equations, (namely Eqs.(7.85), (7.86) and (7.87)) is used. This set of equations is 

referred to as fourth order system. The dotted lines represent approximate 

solutions to short period oscillation and phugoid motions. These approximations 

are dealt with in section 8.11. 

     

Fig.8.3a Response of general aviation airplane to disturbance in Δα and Δu -   

              change in Δα  (Adapted from Ref.1.12, chapter 6 with permission from 

American Institute of Aeronautics and Astronautics, Inc.) 
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Fig.8.3b Response of general aviation airplane to disturbance in Δα  and Δu -

change in Δq (Adapted from Ref.1.12, chapter 6 with permission from American 

Institute of Aeronautics and Astronautics, Inc.) 

 

     

Fig.8.4a Response of general aviation airplane to disturbance in Δα  and Δu – 

change in Δu (Adapted from Ref.1.12, chapter 6 with permission from                   

American Institute of Aeronautics and Astronautics, Inc.) 
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Fig.8.4b Response of general aviation airplane to disturbance in Δα  and Δu -

change in Δθ (Adapted from Ref.1.12, chapter 6 with permission from American 

Institute of Aeronautics and Astronautics, Inc.) 

 

From Fig.8.3a it is observed that rapid changes in angle of attack and 

pitch rate take place in the first few seconds after the disturbance. Figure 8.4a 

shows that the changes in velocity are negligible in the first few seconds and 

extend over a long period of time. Keeping these observations in mind and noting 

the values of the roots of the characteristics equation the following observations 

are made. 

a) The short period oscillation with heavy damping influences the motion during 

the first few seconds. During this period, the angle of attack and pitch rate 

change rapidly whereas the velocity remains approximately constant. However, 

within this short time the angle of attack is nearly restored to its initial undisturbed 

value and remains so thereafter.  

b) The long period oscillation persists after the SPO has died down and 

influences the changes in velocity and pitch angle in a periodic manner. The 

angle of attack remains almost constant. Figures 8.4 a and b also show that after 

the initial transient motion due to SPO dies out, the motion is goverened by the 

LPO whose period is about 29 s (see example 8.3).The amplitude of the velocity 
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fluctuation is nearly half of the initial amplitude after about one and half cycles 

(note that N1/2 in example 8.3, is 1.43 cycles). However, it takes long time for the 

motion to die out.  

8.9.1 Phugoid as slow interchange of kinetic energy and potential energy 

The following aspects of Phugoid are observed. 

(a)As the pitch angle goes through a cycle (Fig. 8.4 b), while the angle of attack 

remains nearly constant implies that the altitude of the airplane also changes in a 

periodic manner (Fig 8.5). 

(b)The damping of the phugoid is very light and the flight speed changes 

periodically. 

(c) Items (a) and (b) suggest that the motion, during one cycle, can be 

considered as an exchange between potential energy and kinetic energy of the 

airplane.The total energy (i.e. sum of potential and kinetic energies) remains 

nearly constant during the cycle.  

 

 

 

Fig.8.5 Schematic of the motion of airplane in LPO 

 

 Fig.8.5 shows half of the cycle during a Phugoid. It is observed that as the 

airplane climbs up, its potential energy increases. At the same time, the flight 
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speed decreases and the airplane loses kinetic energy. At the crest, the flight 

speed is minimum. Conversely, when the altitude decreases the flight speed 

increases and is maximum at the trough. 

    In the 1979 edition of Ref.1.9 chapter an expression for the frequency of 

phugoid is derived based on this exchange between potential energy and kinetic 

energy and neglecting damping. The derivation is presented below, in a different 

manner. The basis is as follows. 

At an instant, during the cycle, the net force in the vertical direction is: 

Z = W – L = 2

L

1
W - ρ V  S C

2
 

= 2

0 L

1
W -  ρ(u +Δu) S C

2
 

2 2

0 0 L

1
= W - ρ(u +2u Δu+Δu )SC

2
 

Ignoring 2Δu  as small compared to the other terms in the bracket yields: 

  2

0 0 L

1
Z W - ρ(u + 2u Δu)S C

2
                                                                             (8.33a) 

Noting that, (a) 2

0 L

1
W = ρ u  S C

2
and (b) LC  is constant when α  is constant, 

  0 LZ = - ρ u  S C  Δu                                                                                                (8.33b) 

Let z  denotes the acceleration in the vertical direction. Then: 

0 LZ = mz = -ρ u  S C Δu                                                                                          (8.33c) 

Let, the solution of Eq.(8.33c) be: 

 maxΔu = Δu  sinωt                                                                                                   (8.33d) 

Substituting for Δu in Eq.(8.33c) yields: 

              0 L maxmz = - ρu SC Δu sinωt                                                                      (8.33e) 

 Integrating Eq.(8.33e) gives: 

   0 L max
1 22

ρu  S C  Δu
z = sinωt + C t+C

m ω
                                                                  (8.33f)    

Noting that (a) z = 0 at t = 0 and (b) z = 0  at t = 
π

2ω
, gives C1 = C2 = 0 
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Or         0 L max

2

ρ u  S C  Δu
z =

m ω
                                                                                (8.33g) 

Now, the altitude changes as z changes and the potential energy changes with it. 

The maximum change in potential energy  
max

ΔPE  is mg (zmax – zmin). From 

Eq.(8.33g) 

                0 L max

2max

2 g ρ u  S C  Δu
ΔPE =

ω
                                                          (8.33h) 

The maximum change in the kinetic energy  
max

ΔKE  is: 

     
22

0 max 0 maxmax

1 1
ΔKE =  m (u +Δu ) - m u -Δu

2 2
  0 max= 2mu Δu                      (8.33i) 

Since, the phugoid is approximated as an exchange between PE and KE, 

                     
max max

ΔPE = ΔKE  

Or     0 L max

2

2gρu SC Δu

ω
  = 0 max2mu Δu                                                                   (8.33j) 

Substituting L 2

0

2mg
C =

ρu S
  in  Eq.(8.33j) yields: 

                     
0

g
ω = 2 rad/s

u
                                                                            (8.33 k) 

This interesting result shows that the frequency of phugoid is inversely 

proportional to u0 or the time period of the oscillation is proportional to u0. The 

result is independent of the airplane characteristics because the damping (which 

depends on CD) has been ignored in the analysis. 

In subsection 8.11.2 the same expression for ω  is obtained by simplifying 

the equations of motion. 

Remark: The website: www.youtube.com  has many videos on Phugoid. One of 

them ( PH-Lab (3/7)) indicates phugoid motion as the movement of horizon when 

photographed from inside the airplane. See also videos on short period  

oscillation.                                                                                             

http://www.youtube.com/
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