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Chapter 8  

   Dynamic stability analysis – II – Longitudinal motion 

(Lectures 28 to 32) 

Keywords : Stability quartic or characteristic equation for longitudinal motion and 

its solution ; roots of characteristic equation and types of motions indicated by 

them ; short period oscillation (SPO) and long period oscillation (LPO) or 

Phugoid; equations of motion in state space or state variable form ; 

approximations for SPO and LPO; stability diagrams – one parameter, two 

parameter and root locus plot ; eigen values and eigen vectors, longitudinal stick-

free dynamic stability. 
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Chapter 8  

Dynamic stability analysis – II – Longitudinal motion - 1 

Lecture 28  

Topics 

8.1 Introduction 

8.2 Examination of stability of longitudinal motion – obtaining        

      characteristic equation 

8.3 Response indicated by roots of characteristic equation 

8.4 Type of roots which indicate dynamic stability 

Example 8.1 

 8.1 Introduction 

       The small perturbation equations for the longitudinal motion are derived in 

the previous chapter. These are reproduced below for ready reference. 

u w 0 δe e δT T

d
-X )Δu - X  Δw + g cosθ  Δθ = X  Δδ + X  Δδ

dt
(                                   (7.85) 

u w w 0 q 0

d d
-Z Δu + [(1 - Z ) - Z ]Δw - [(u +Z ) -  gsinθ ] Δθ

dt dt
 

δe e δT T=  Z Δδ + Z  Δδ                                                                                                     (7.86) 



2

u w w q2

d d d
-M Δu - (M +M ) Δw + ( -M ) Δθ

dt dt dt
 

δe e δT T=  M  Δδ  + M  Δδ                                                                                                 (7.87) 

In this chapter the longitudinal dynamic stability is analysed by examining 

whether the disturbances Δu , Δw and Δθ  grow or subside with time. The stick-

fixed case is considered initially. In this case, the elevator deflection does not 

change during the motion which follows after the disturbance. Stick-free case is 

dealt with in section 8.15. 

8.2 Examination of stability of longitudinal motion - obtaining characteristic 

equation 

   After deriving the linearized equation for small perturbation, it was 

mentioned at the end of subsection 7.9.3, that the stability of the motion can be 

Free Hand

Free Hand



Flight dynamics –II  Prof. E.G. Tulapurkara  
Stability and control 

Dept. of Aerospace Engg., IIT Madras 4

examined without obtaining the solution of the governing differential equations. 

The procedure to examine the stability is as follows.  

The small perturbation equations (Eqs.7.85 to 7.87) are linear i.e. they do 

not involve terms containing products of dependent variables or their powers. 

Such a set of equations admits a solution of the form:  

                    Δu = ρ1e
λt, Δw = ρ2e

λt, Δθ = ρ3e
λt.                                                 (8.1) 

Substituting for u ,Δw  and Δθ  from  Eq. (8.1) in Eqs.(7.85),(7.86), (7.87) and 

noting that for stick-fixed stability problem Δδe and Δδt are zero, gives the 

following equations : 

λ ρ1 e
λt  – Xu  ρ1 e

λt – Xw  ρ2 e
λt + g cos θ0 ρ3 e

λt = 0                                            (8.2) 

  - Zu ρ1 e
λt + [(1-Z w )λ  - Zw] ρ2 e

λt – [(u0+Zq) λ - g sinθ0] ρ3 e
λt = 0                    (8.3)                 

  - Mu ρ1e
λt + (M w  λ + Mw)ρ2 e

λt + (λ2 - Mq λ) ρ3 e
λt  = 0              (8.4)                            

Dividing by eλt  the above equations can be rewritten as: 

u 1 w 2 0 3(λ - X ) ρ  - X  ρ  + g cosθ  ρ = 0                                                           (8.5)  

u 1 w w 2 0 q 0 3- Z  ρ  + {(1- Z ) λ - Z } ρ +{(u - Z ) λ- g sinθ }ρ = 0                               (8.6)                             


2

u 1 w w 2 q 3- M  ρ  + (M  λ + M )ρ  + (λ - M  λ)ρ = 0                                            (8.7) 

The Eqs. (8.5),(8.6) and (8.7) are a set of homogeneous equations for ρ1, ρ2 and 

ρ3 . The solution ρ1 = ρ2 = ρ3 = 0 is called a trivial solution for obvious reasons. 

For a non-trivial solution to exist, the following condition must be satisfied: 

 

                 

                                                                                                                          (8.8)                            

 

When the determinant in Eq.(8.8) is expanded, it yields the following fourth 

degree polynomial in λ  which is called the characteristic equation of the dynamic 

system    

          Aλ4 + Bλ3 + Cλ2 + Dλ + E = 0                          (8.9)                            

Equation(8.9) is also called stability quartic. 

When  Zq and  Zw  are ignored and  θ0 is taken zero, the coefficients A,B,C,D 

and E in Eq.(8.9) are : 





u w 0

u w w 0 q 0
2

u w w q

λ - X - X g cosθ

- Z  (1- Z )λ - Z (u - Z )λ- g sinθ = 0

- M M λ + M λ - M λ
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q 0 w w u

A = 1

B = - M -u  M -Z - X
 

w q 0 w w u u q 0 w wC = Z  M - u  M - X  Z  + X (M + u M + Z )                (8.10)     

 u w q 0 w u w q w u 0 w

u w w u

D =  - X (Z  M - u  M ) + Z (X  M + g M )- M (u  X - g)

E =  g(Z  M - Z  M )
                                                              

8.3 Responses indicated by roots of characteristic equation 

Equation (8.10) has four roots namely λ1,λ2, λ3 and λ4 . The response to 

the disturbance i.e. the variations of Δu, Δw and Δθ with time can now be written 

as: 

31 2 4λ tλ t λ t λ t
11 12 13 14Δu = ρ  e +ρ  e +ρ  e +ρ  e                  (8.11) 

 31 2 4λ tλ t λ t λ t
21 22 23 24Δw = ρ  e +ρ  e +ρ  e +ρ  e                    (8.12)  

31 2 4λ tλ t λ t λ t
31 32 33 34Δθ = ρ  e +ρ  e +ρ  e +ρ  e                          (8.13)                            

To evaluate the coefficients ρ11, ρ12,.. , ρ34 the differential Eqs.(7.85) to (7.87)  

need to be solved with appropriate initial conditions. However, to examine the 

stability, it is enough to know the values of λ1 to λ4. Because the term eλt, which 

depends on λ ultimately decides whether the disturbances Δu, Δw and Δθ die 

down, remain same or increase with time. This is explained below.  

The roots (λ1 to λ4) can be of the following six types: 

a)  λ is real and positive = r 

b)  λ is real and negative = -r 

c)   λ is zero 

When the roots are complex they appear as a pair of complex conjugates (r+is) 

and (r-is) .  Where ‘r’ is the real part, ‘s’ is the complex part and ‘i’ is (√-1) .The 

two roots together are represented as (r±is). There could be three cases when 

the roots are complex. 

d) λ1 and λ2 constitute a complex pair r± is with ‘r’ positive. 

e)λ1 and λ2 constitute a complex pair r± is with ‘r’ negative. 

f) λ1 and λ2 constitute a complex pair r± is with ‘r’ being zero. 

The variations of eλt with time, for the above six cases are explained below and 

shown in Fig.8.1. 
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I) When the root is a real number and positive the term eλt becomes ert. It is 

evident that the disturbance(e.g. Δu ) will grow exponentially with time (Fig. 8.1a). 

This response is called divergence.  

II) When the root is a real number and is negative the term eλt becomes e-rt. This 

indicates that the disturbance will die down eventually (Fig.8.1b). This motion is 

called subsidence. 

III) If the root is zero the term eλt would become e0 or unity. This indicates that the 

system would remain in the disturbed position (Fig.8.1c). This response is called 

neutral stability.  

IV) When the roots form a complex pair, they appear as (r ± i s). There are 

following two possibilities.  

 a) When the four roots consist of two real roots (λ1 and λ2) and a complex pair 

(r± is), then the response would be of the form: 

1 2λ t λ t rt
11 12 13 1Δu = ρ  e  + ρ  e  + ρ'  e cos (s t + C )      (8.14) 

  where, ρ′13 and C1 are constants. 

 

 

Fig.8.1 Motions following disturbance - as indicated by roots 
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Or      1 2λ t λ t rt rt
11 12 13 14Δu = ρ  e  + ρ  e  + ρ  e cos (s t) + ρ  e sin (s t)                  (8.15) 

It is observed that the response corresponding to the complex root is an 

oscillatory motion.                                                                                                                   

b) When the four roots consist of two complex pairs, (r1 ± i s1) and (r2± i s2), then 

the response is: 

1 2r  t r  t
11 1 1 12 2 2Δu = ρ' e cos (s t + C )+ρ' e cos (s t + C )                                  (8.16) 

1 1 2

2

r  t r  t r  t
11 1 12 1 13 2

r  t
14 2

Or Δu = ρ  e cos (s t) + ρ  e sin (s t) + ρ  e cos (s t)

+ ρ  e sin (s t)
                      (8.17) 

The amplitude of the oscillation is decided by the quantity ‘r’. Following three  

responses are possible depending on the value of ‘r’.  

i) If ‘r’ is positive, then the amplitude of the periodic variation increases with each 

oscillation (Fig.8.1d). This mode is called divergent oscillation.  

ii) If ‘r’ is negative, then the amplitude of the periodic variation decreases with 

each oscillation (Fig.8.1e). This mode is called damped oscillation.  

iii) If ‘r’ is zero, then the amplitude of the periodic motion remains constant 

(Fig.8.1f). This mode is called undamped oscillation.  

8.4 Types of roots which indicate dynamic stability 

    From the above discussion it is observed that for an equilibrium state to be 

dynamically stable, the roots of the characteristic equation have to be one of the 

following two types. 

(a) When the root is real number, it should be negative. 

 (b)When the root is complex number, the real part should be negative.  

Thus, the dynamic stability of the airplane can be judged by observing the roots 

of the characteristics equation. It is not necessary to obtain the response of the 

airplane to the disturbance. To illustrate the aforesaid discussion, Example 8.1 

considers the dynamic stability of the general aviation airplane. 

Example 8.1  

    Examine the dynamic stability of the general aviation airplane details given 

below. Figure 8.2 presents for the three-view drawing of the airplane.It may be 
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pointed out that this example is adapted from Ref.2.4 and the airplane 

considered is same as in example 2.4 in chapter 2.It is called “Navion” in Ref 2.4. 

 

Flight condition: Steady level flight at sea level at  

u0 = 176 ft/s = 53.64 m/s (M = 0.158) 

Weight of the airplane = 12232.6 N, Mass of the airplane = m= 1247.4 kg. 

Acceleration due to gravity (g) is taken as 9.80665 m / s2, Iyy = 40675.8 kg m2. 

Geometric details: 

S = 17.09 m2, c = 1.737 m, b = 10.18 m 

Other details:  

 ρ = 1.225 kg m-3 , CL = 0.41, CD = 0.05 

 CLα = 4.44 rad-1, CDα = 0.33 rad-1, mC   = - 0.683 rad-1, 

 CLu = 0 , CDu = 0 , Cmu = 0 , mαC   = - 4.36,   CLq = 3.8 (from Ref.1.1, chapter 4) ,  

Cmq = - 9.96 . 

 

 

Fig.8.2 Three-view drawing of the general aviation airplane Navian 

(Adapted from Ref.2.4) 
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Solution:  

From the above data the following quantities, needed for obtaining stability 

derivatives, are deduced. 

2 2 -2
0

-1
0

0

0 0 yy

1 1
Q = ρu  = ×1.225 (53.64) = 1762.3 Nm ,QS  = 30117.7N,

2 2

c
QSc =  52314.4 Nm, =  0.0162 s, mu =  66910.5 kg ms

2u

QS QSc
= 0.450 , = 0.240

mu u I

 

The longitudinal stability derivatives are:    

-1
u Du D

0

-1
u Lu L

0

u

-1
w Dα L

0

-1
w Lα D

0

QS
X = - (C +2C ) = - 0.45 (0+2×0.05) = -0.045 s

mu

QS
Z = - (C +2C ) = - 0.45 (0+2×0.41) = - 0.369 s

mu

M =  0

QS
X = - (C -C ) = - 0.45 (0.33-0.41) = 0.036 s

mu

QS
Z = - (C +C ) = - 0.45 (4.44 + 0.05) = - 2.02 s

mu

    







-1 -1
w mα

0 yy

w

w

-1
w mα

0 0 yy

q

q

-1
q mq

0 yy

Q S c
M = C = 0.240 (- 0.683) = - 0.164 m s

u I

X = 0

Z = 0

c QSc
M = - C = - 4.36×0.0162 × 0.240 = - 0.01695 m

2u u I

X = 0

Z = 0

c QS
M = C = - 9.96×0.0162×53.64×0.240 = - 2.077 s

2u I

 

Substituting the numerical values of the stability derivatives in Eqs.(8.10) gives: 

 A = 1, B = 5.05, C = 13.15, D = 0.6735 and E = 0.593.  

 Hence, the stability quartic (Eq.8.9) or the characteristic equation appears as: 
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4 3 2λ  + 5.05λ  + 13.15 λ  + 0.6735 λ + 0.593 = 0                          (8.18)     

The roots of this equation are obtained in the next section.                                                                
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