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7.8 Expressions for changes in aerodynamic and propulsive forces and 

moments 

    The aerodynamic forces and moments and the propulsive force vary with 

Δu, Δv, Δw, Δp, Δq, Δr, Δδa, Δδe and Δδr and their derivatives. According to 

Ref.1.1, chapter 3, Bryan, who gave the basic frame work of stability analysis in 

1911, assumed that these forces and moments can be expressed as functions of 
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the perturbation variables. This can be expressed in the form of a Taylor series 

as: 

ΔX (Δu, Δv, Δw, Δp, Δq, Δr, Δu , Δ v , ..Δδa , Δδe, Δδr, ΔδT); 

... ...
v

      
               

      
a e T

a e r T

X X X X X X X
u v u δ δ δ δ

u u δ δ δ δ
r

       

                         + higher order terms                                                              (7.69) 

Note :  ΔδT is a parameter indicating engine setting. 

7.8.1  Simplified expressions for changes in aerodynamic and propulsive 

forces and moments 

The small perturbation equations have been linearized by ignoring the 

terms containing the powers of perturbation quantities. Continuing the 

simplification, the higher order terms in Eq.(7.69) are ignored. Further, to avoid 

unnecessary complications, ΔX, ΔY, ΔZ, ΔL′, ΔM and ΔN are expressed in terms 

of only a few quantities which directly affect them. Table 7.4 presents the 

quantities and the perturbation variables on which they depend i.e.  

   

   
e T

e T

X X X X
ΔX = Δu+ Δw + Δδ + Δδ

u w δ δ
      (7.70) 

e T

e T

Z Z Z Z Z Z
ΔZ = Δu+ Δw + Δw + Δq + Δδ + Δδ ; q = dθ/dt

u w w q δ δ

     

     
     

                                                                                                                       (7.71) 

e T

e T

M M M M M M
ΔM = Δu+ Δw+ Δw+ Δq+ Δδ + Δδ

u w w q δ δ

     

     
  (7.72) 

 

r

r

Y Y Y Y
ΔY = Δv+ Δp+ Δr+ Δδ

v p r δ

   

   
               (7.73) 

r a

r a

L' L' L' L' L'
ΔL' = Δv + Δp + Δr + Δδ + Δδ

v p r δ δ

    

    
    (7.74)                                                                                                                                   

r a

r a

N N N N N
ΔN = Δv+ Δp+ Δr+ Δδ + Δδ

v p r δ δ

    

    
    (7.75) 
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Quantity Dependence on 

ΔX Δu, Δw, Δδe, ΔδT 

ΔZ Δu, Δw, Δw  , Δq, Δδe, ΔδT 

ΔM Δu, Δw, Δw , Δq, Δδe, ΔδT 

ΔY Δv, Δp, Δr, Δδr 

ΔL′ Δu, Δp, Δr, Δδr, Δδa 

ΔN Δu, Δp, Δr , Δδr, Δδa 

 

Table 7.4 Changes in aerodynamic forces and moments and their dependence 

 

Remarks: 

i) The simplification of expressing ΔX, ΔZ… ΔN, in terms of only a limited number 

of variables is possible because of the following reasonable assumptions.  

(a) ΔX, ΔW and ΔM are affected only by the variables of longitudinal motion i.e. 

Δu, Δw, Δw , Δq, Δδe, ΔδT ; the dependence of ΔX on Δw  is ignored (Eq.7.70).  

(b) ΔY, ΔL’ and ΔN are dependent only on the variables affecting lateral and 

directional motions viz. Δv, Δp, Δr and control deflections Δδe, Δδa.   

ii)  These assumptions are valid for conventional airplanes with (a) plane of 

symmetry, (b) high aspect ratio wings (A>5) and (c) flying at moderate angles of 

attack. Consult Ref.1.12 chapter 4 for treatment of airplanes with low aspect ratio 

wings and those operating at high angles of attack.  

7.8.2 Stability derivatives 

The quantities ∂X / ∂u, ∂X / ∂w, … ∂N/ ∂δr, ∂N/ ∂δa in Eqs.(7.70) to (7.75) are 

called stability derivatives.  

7.9 Final form of small perturbation equations 

Substituting for ΔX from Eq.(7.70) in Eq.(7.63) yields:  

e T 0

e T

dΔu X X X X
m = Δu+ Δw+ Δδ + Δδ - mg Δθ cosθ

dt u w δ δ

   

   
                 (7.76)                                                                                                                    

Or 0 e T

e T

d X X X X
(m - )Δu - Δw  +  mg cosθ  Δθ  =    Δδ  +   Δδ

dt u w δ δ

   

   
  (7.77) 
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The following notations are commonly used to simplify the small perturbation 

equations. 

u w δe δr

e T

1 X 1 X 1 X 1 X
X = , X = , X = , X = ;

m u m w m δ m δ

   

   
   (7.78) 

Using these, Eq.(7.77) can be rewritten as: 

u w 0 δe e δT T

d
( - X )Δu -  X  Δw +  g cosθ  Δθ =  X Δδ +  X  Δδ

dt
   (7.79)                                                                                                                                     

In a similar manner, the following notations are used to simplify the expressions 

for ΔZ, ΔM, ΔY, ΔL’ and ΔN.  

u w w δe δT

e T

1 Z 1 Z 1 Z 1 Z 1 Z
Z = , Z = , Z = , Z = , Z = ,

m u m w m w m δ m δ

    

    
   (7.80) 

u w δe δT

yy yy yy e yy T

1 M 1 M 1 M 1 M
M = , M = ,...,M = , M =

I u I w I δ I 

   

   
     (7.81) 

v r δr

r

1 Y 1 Y 1 Y
Y = , Y = , Y =

m v m r m δ

  

  
                (7.82) 

v p r δa δr

xx xx xx xx a xx r

1 L' 1 L' 1 L' 1 L' 1 L'
L' = , L' = ,L' = ,L' = , L' =

I v I p I r I δ I δ

    

    
        (7.83)                                                                                                                        

v p r δa δ

zz zz zz zz a zz r

1 N 1 N 1 N 1 N 1 N
N = , N = ,N = , N = ,N =

I v I p I r I δ I δ

    

    
          (7.84) 

7.9.1 Small perturbation equations for longitudinal motion    

The small perturbation equations for longitudinal motion are: 

u w 0 δe e δT T

d
(  - X )Δu - X Δw + g cosθ  Δθ = X  Δδ + X  Δδ

dt
                   (7.85)                                                                                                                   

u w w 0 q 0

d d
-Z Δu + [(1- Z ) - Z ] Δw - [(u +Z ) - g sinθ ]Δθ

dt dt
δe e δT T

= Z Δδ  + Z  Δδ     (7.86)                                                                           

2

u w w q2

d d d
- M Δu -  (M +M )Δw + ( - M )Δθ

dt dt dt
 

δe e δT T
= M  Δδ + M  Δδ               (7.87) 
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7.9.2 Small perturbation equations for lateral motion 

The small perturbation equation for lateral motion are:  

v 0 r 0 δr r

d
( - Y ) Δv - (u - Y ) Δr - gcosθ Δφ = Y Δδ

dt
    (7.88) 

xz
v p r δa a δr r

xx

Id d
-L' Δv +  ( -L' ) Δp  -  [ +L' ] Δr =  L'  Δδ  +  L'  Δδ

dt I dt
              (7.89)      

 xz
v p r δa a δr r

zz

I d d
-N  Δv - (  + N ) Δp -  [ - N ]Δr  =  N Δδ  + N Δδ

I dt dt
          (7.90)                                                                                                                      

7.9.3 Remarks on solutions of small perturbation equations to obtain 

response of airplane to a disturbance and to the control input 

The Eqs.(7.85) to (7.90) constitute the linearized small perturbation 

equations for longitudinal and lateral motions. Their solution would yield answers 

to two types of problems namely (a) response to a disturbance and (b) response 

to a control input. In the case of response to a disturbance, with the control fixed, 

it is assumed that Δδe, Δδr, Δδa, and ΔδT are zero. To study the effect of 

disturbance, it is assumed that one of the parameters from among u


 , w


 ,.. 

.., r


  is given a small value at time t = 0. Then, the equations are solved with this 

initial condition. The changes, with time, in the values of the chosen parameters 

would give information about the dynamic stability.  However, it will be pointed 

out in section 8.2 that it is not necessary to solve the above differential equations 

to know whether the airplane is stable or not. There is a simpler approach to infer 

about the stability of the airplane. 

In the case of response to the control input, it is assumed that the control 

deflection is given as a function of time and the solution of the above equations is 

obtained. For example, it may be prescribed that the elevator deflection Δδe 

changes from zero to a value Δδe1, in a small interval of time and then remains 

constant (Fig 7.4a).  The solution of the equations would give the information 

about change in angle of attack and the time taken to achieve the final value. 

Figure 7.4b shows a response wherein the airplane attains the final angle of 

attack after over-shooting it (final value). In some cases, the final value may be 
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achieved monotonically. However, calculation of response is an involved task.  

Some indication about this is given in chapter 10.  

 

            

 

                  (a) Elevator deflection             (b) Possible response of     

                                                                        change in angle of attack.  

Fig.7.4 Response to elevator deflection 

                                                                                                    

7.10 Estimation of stability derivatives 

    The solution of small perturbation equations for longitudinal motion would be 

taken up in chapter 8 and for the lateral motion in chapter 9. However, to solve 

these equations the stability derivatives are required. The following subsections 

deal with their estimation. 

7.11 Derivatives due to change of ′Δu′ 

These derivatives include ∂X / ∂u, ∂Z / ∂u and ∂M / ∂u. 

7.11.1 ∂X / ∂u 

The changes in ΔX are caused by changes in the drag and the thrust i.e. 

ΔX = -ΔD + ΔT           (7.91) 

 Continuing with the linearized treatment of the problem, the variation of ΔX with 

Δu is expressed as:  

D T
X u u

u u

 
     

 
         (7.92) 

Or 
1

( ) ( )
2

C     
         

      

2 2 D
0 D 0 0 D

X D T 1 T T
ρ u  S C ρS u 2u C

u u u u 2 u u u
  (7.93) 

 Recall that Xu= (1 / m) (∂X / ∂u) and let CDu =  ∂ CD / ∂ (u / u0)  
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As regards the term, ∂T/ ∂u the following may be noted.  

a) For gliding flight, T= 0 and hence, ∂ T / ∂u = 0. 

b) For a jet airplane, T is almost constant over small intervals of u and hence,           

∂T/ ∂u = 0. 

c) For a piston engined airplane with variable pitch propeller, the THP is nearly 

constant over a small range of u. Hence,  

 T = THP/u and consequently ∂T/∂u =  - THP/u2 = - D/u 

As regards CDu the following facts may be noted. 

a) For subsonic flights with Mach number less than the critical Mach number, the 

drag coefficient remains constant with Mach number and hence CDu = 0. 

b) When CD is a function of Mach number (M1), CDu is written as: 

CDu = ∂CD / ∂(u / u0) = u0 ∂CD / ∂(a0 M1) = (u0 / a0) ∂CD / ∂ M1 =M1 ∂ CD / ∂M1;  

where, a0 = speed of sound under conditions of undisturbed flight. The symbol M1 

is used for Mach number to avoid confusion with pitching moment (M). 

With the above considerations, Xu can be written as:    

 

 

0
u Du D

ρ u  S1 X 1 T
X = = - (C  + 2C ) + 

m u 2m m u
                (7.94)                                                                                                                                 

2

0
u Du D

0 0

ρ u  S -D
X = - (C +2C ) + 0 or ( )

2mu mu
                 (7.95) 

2D
Du D 0

0 0

-C QSQS 1
- (C +2C ) or ( ); Q = ρu
mu mu 2

  0      (7.96) 

Du D D

0

QS
= - {(C +2C )+0 or (- C )}

mu
                             (7.97)                                                                                                          

Following Ref.1.1, chapter 3, two new quantities CX and CXu are introduced : 

 

 

X
X Xu

0 0

CX 1 X
C = ; C = =

QS (u/u ) (1/2)ρSu u
                (7.98) 

Consequently,  

2

0
u Xu

0

ρSu1 X
X = = - C

m u 2mu




                  (7.99) 

Xu Du D DC = -{(C +2C )+0 or (-C )}                         (7.100)                                                                                                                            
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7.11.2 ∂Z/∂u  

 The force in Z-direction is due to the weight and the lift.   

2

0 L

1
Z =  W - ρu S C

2
                 (7.101) 

Ignoring the change in weight during the disturbance, gives (Z /u ) as: 

( )


 

 
0 Lu L Lu

0

Z 1
- ρSu (C +2C ); C

u 2 u/u
L
C

                                 (7.102)                                               

Let,  



Zu zu Lu L

0

1 Z
C = ; Then, C = -(C + 2C )

(1/2)ρSu u
                                (7.103) 

Or 
2

0
u Lu L

0

ρSu1
Z = (C + 2C )

m 2mu

Z

u


 


              (7.104) 

Lu L

0

QS
= - (C + 2C )

mu
                                                                                             (7.105) 

It may be added that: 

a) At low subsonic Mach number CLu can be neglected. 

b)  At sub-critical Mach numbers Ref 1.1, chapter 3 states that dCL / dM1 can be 

calculated using Prandtl -Glauert rule applicable to airfoils. However, Ref.1.12, 

chapter 4 suggests that: 

LαL
Lu 1 1

1 1

dCdC
C = M = M α

dM dM
                             (7.106) 

The term CLα as a function of Mach number is given as: 

2

1
2

-1

Lα
22

c/2

2

1

2πA
C = inrad

(1+ tan Λ )A β
2+ + 4

K β

              (7.107) 

where, A = Aspect ratio of wing, Λc/2 = sweep of  the mid-chord line, β1 = (1-

M1
2)1/2 and K = (lift curve slope of airfoil) / 2π. 

Remark:  

    The stability derivative CLu for Boeing-747 is calculated at M1 = 0.8 in 

Appendix ‘C’. For this purpose CLα is evaluated at M1 = 0.82 and M1 = 0.78. Using 

these two values dCLα / dM is calculated at M1 = 0.8. 
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7.11.3 ∂M/∂u   

Noting that   2

0 mcg

1
M = ρu S c C

2
   gives:                                                   (7.108) 

( )
 


 

2

0 mcg

M 1
ρSu C

u u 2
c  

 
mcg2

0 0 mcg

C1
= ρS c (u + 2 u C )

2 u




           

But, Cmcg = 0 in equilibrium flight.  Consequently,  

M
0 mu mu

0

CM 1
= ρ S c u C where, C =

u 2 (u/u )



 
                     (7.109) 

 Analogous to Eq.(7.105), Cmu can be expressed as:  

m
mu 1

1

C
C = M

M





mα
1

1

dC
= M α

dM
 where, M1 is Mach number                             (7.110) 

Hence,   



u mu

yy 0 yy

1 M Q S c
M = = C

I u u  I
                           (7.111)                                                                                                                        

Changes in Cmα with M1 are found out by obtaining Cmα at nearby Mach numbers 

(see Appendix ‘C’). The value is also affected by elastic bending of the wing and 

fuselage.  

7.12 Derivatives due to change of ′Δw′ 

 These include ∂X / ∂w, ∂Z / ∂w and ∂M / ∂w. The discussion in this 

subsection is based on Ref.7.2, chapter 4.  It may be noted that in the 

undisturbed flight, Xs- axis is along the flight direction. i.e. V = u0 i, w0 = 0, v0 = 0. 

After the disturbance, the airplane has Δw (Fig.7.5). Thus, the relative wind 

makes an angle Δα = Δw / u0. The lift (L) and drag (D) are now perpendicular and 

parallel respectively to the relative velocity (VR) as shown in Fig.7.5. 
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Fig.7.5 Stability derivatives due changes of w 

 

7.12.1 ∂X / ∂w 

 From Fig.7.5 , 

X =  L sin Δα  -  Dcos Δα                          (7.112)     

Further,    


 


 0

1

u

X X

w
                                                                                (7.113)        

 Hence,   
  

  
0

X 1 L D
 = {Lcos Δα +  sinΔα + Dsin Δα- cos Δα}

w u α α
              (7.114) 

Since, Δα is small, cos Δα = 1 and terms involving sin Δα are ignored. 

Hence, 
 

  
 

w

0

1 X 1 D
X (L )

m w mu
               (7.115) 

2 2

0 L 0 D

0

1 1 1
{  ρu SC ( ρu SC )}

mu 2 2


 


 

2

0
L D D L

0 0

ρu S QS
(C -C ) (C -C )

2mu mu
  

 
                           (7.116) 

 w 0
Xα Xα L Dα

X mu
Let, C = Then, C =  C - C

QS
,                     (7.117)                                                                                                                       

Note: For Mach number less than the critical Mach number the drag polar is 

given by: 

2

L L
D D0 Dα Lα

C 2C
C = C + . Hence, C = C

πAe πAe
. 
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