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Chapter 7 

Dynamic stability analysis – I – Equations of motion 

and estimation of stability derivatives - 1 

Lecture 22  

Topics 

7.1 Introduction 

7.2 Equations of motion in vector and scalar forms 

   7.2.1 Acceleration of a particle on a rigid body 

    7.2.2 Vector form of equations of motion 

  7.2.3 Scalar form of equations of motion 

7.3 Forces acting on the airplane 

 

7.1 Introduction 

As mentioned in earlier chapters a system is said to have static stability 

when, after being given a small disturbance, it has a tendency to return to the 

equilibrium position. To analyse the static stability, the moments brought about 

immediately after the disturbance are only to be considered. However, for a 

system to be dynamically stable it must finally return to the equilibrium position. 

Thus, to examine the dynamic stability, the motion following a disturbance or an 

intended control input needs to be analysed. This motion is called response. 

However, an airplane is a system with six degrees of freedom and obtaining the 

response is a difficult task. Presently, computer programs are available to 

analyse response of such systems. However, in this introductory course the 

equations of motion are derived and simplified forms are obtained. Subsequently, 

the conditions that ensure dynamic stability are deduced without solving the 

equations. The topic of response would be touched upon, in chapter 10, with 

examples of simpler systems. 

The treatment of dynamic stability can be divided into the following topics. 

1. Derivation of the equations of motion, in vector and scalar forms, for a 

rigid body. 
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2. Axes systems used for describing airplane motion. 

3. Equations of motion in stability axes system.  

4. Equation of motion with small perturbation.  

5. Linearization and decomposition of small perturbation equations. 

6. Stability derivatives. 

7. Solution of the equations of motion for longitudinal motion. 

8. Equations of motion in state variable form  

9. Stability diagrams  

10.  Approximations of longitudinal motion  

11.  Lateral dynamic stability 

The topics 1 to 6, from the above list are dealt with in this chapter. Topics  

7-10 are discussed in chapter 8 and topic 11 is covered in chapter 9. 

 

7.2 Equations of motion in vector and scalar forms 

         The equations of motion are obtained by applying the Newton’s second law 

to the motion of airplane. For this purpose the airplane is treated as a rigid body 

which is translating as well as rotating. This motion is decomposed as:  

(a) translation of the c.g. of the airplane with reference to an inertial frame which 

is taken as a frame fixed at a point on the earth and 

(b) rotation with respect to the inertial system of a body axes system, attached to 

the airplane. The linear velocity, vector and the angular velocity vector are 

resolved along the body axes system (see Eqs.7.12a and 7.12b). 

    It may be pointed out that the use of a body axes system has the 

advantage that the moments of inertia and products of inertia calculated with 

respect to this system would remain almost constant. They(moments of inertia) 

may change slightly during the flight due to the consumption of fuel or deflection 

of control surfaces. 

 To apply Newton’s second law to the motion of an airplane, requires an 

expression for the acceleration of an elemental mass ′dm′ located at a point on 

the body. An expression for it (acceleration), in the context of the aforesaid 

decomposition, is derived in the next subsection. 
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7.2.1 Acceleration of a particle on a rigid body 

Let the fixed frame of reference be EXeYe Ze with origin at E. Let the body 

fixed coordinated system attached to the airplane be OXYZ (Fig.7.1). Let the unit 

vectors along OX, OY and OZ axes be i, j and k. It may be mentioned that the 

quantities in bold letters are vectors. With reference to the co-ordinate systems, 

the position vector of the elemental mass ‘dm’ at point P on the body can be 

expressed as: 

x + y +z ; + +EP EO OP EO i j k                               (7.1) 

 

 

                                                   Fig 7.1 Motion of a rigid body  

 

The velocity of an elemental mass ‘dm’ at point P is the time derivative of its 

position vector i.e. 

   
d d d d d

dt dt dt dt dt
  

x y z(EP) (EO) (OP) (EO) ( i + j+ k)
V = =     

        =  
dx dy dz d d d

i j k x y z
dt dt dt dt dt dt

     
i j k

0V                                                      (7.2) 
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0

(EO)
V =

d

dt
             (7.3)                                                                                                                                   

For a rigid body, the distance between any two points is constant. Hence,  

 dx / dt = dy / dt = dz / dt = 0.                         (7.4)                                                                       

When a system of axes rotates with angular velocity ω, then   

; ;     
i j k

ω i ω j ω k
d d d

dt dt dt
                    (7.5)                                                                  

Hence, ( )
d

x y z
dt

     
OP

ω i j k ω OP                                                                                                                                  

Thus, the velocity of the elemental mass at point P can be written as: 

( i j k)  0V =V +ω x y z                                                     (7.6)                                                                                                                  

0 = V +ω OP                        (7.7) 

The acceleration is the rate of change of velocity i.e. 

d( + × )d
= =

dt dt
0V ω OPV

a            (7.8) 

dd d
= +  ×  +  × ; =

dt dt dt
0

0 0

Vω OP
a a OP ω a         (7.9) 

Replacing 
d

dt

OP
  by ω x OP,  the acceleration (a) of the elemental mass at point 

P can be expressed as:  

= + ×  + × ( )0a a ω OP ω ω × OP        (7.10) 

7.2.2 Vector form of equations of motion 

Applying Newton’s second law of motion, the equations of motion is vector form 

are: 

m

= dmF a                     (7.11) 

m

 M OP a dm          (7.12)                                                                                                                                     

7.2.3. Scalar form of equations of motion 

Though the vector form of the equations of motion is compact, the 

equations in scalar form are needed to solve them. This is done by writing the 

expressions for acceleration, forces and moments as sum of their x-, y-, and z- 
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components and then equating the expressions for the three components on the 

two sides of Eqs.(7.11) and (7.12). While deriving the scalar form, some terms 

would not be resolved into components, since they would vanish on integration 

over the mass of the body.  

Let the origin on the body have a velocity (V0) i.e.      

  V0 = ui + vj+ wk                               (7.12a)                                                                           

and angular velocity, ω = p i + q j+ r k                                                        (7.12b) 

Then, the velocity of any point on the body as shown earlier (Eq.7.7) is:  

  V = V0 + ω x OP              

The acceleration of the point P, from Eq.(7.9),  is : 

( )d u v w d d

dt dt dt

 
    

i j k ω OP
a OP ω       (7.13)                                                                                                                                 

Expanding the terms on the right hand side of Eq.(7.13) gives: 

u v w u v w

p q r p q r

( ) ( ) ( )

{ ( ) ( ) ( ) }

     

         

a i j k ω×i ω× j ω×k

i j k ω i ω j ω k OP
 

           ( )  ω ω OP                                                             (7.14) 

Equation (7.11) can now be written as: 

     

      





{u v w ( ) v( ) ( )}dm

{p q r p( ) q( ) r( )} dm

m

m

u wF i j k ω×i ω× j ω×k

i j k ω×i ω× j ω×k OP
  

m

( dm)   ω ω OP                                                                                       (7.15) 

Taking ‘O’ as the center of mass, gives:  

0dm
m

OP            (7.16)                                                                  

Hence, Eq.(7.15) simplifies to:  

        m [u v w u (r ) v (p r ) (q p )]q wF i j k j k k i i j       

   m (u qw-r v) m(v+ru-pw) m(w+pv-qu)i j k                                  (7.17) 

Let  F be expressed as: 

F F F Fx y z  i j k          (7.18) 

Equating Eqs.(7.17) and (7.18) gives the force equations in scalar form as: 

Free Hand
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x

y

z

F = m (u + q w - r v)

F = m (v + r u - p w)

F = m (w + p v - q u)

         (7.19) 

The scalar form of moment equations is now derived. The equation in the vector 

form is: 

 
m

M OP×adm  

       
m

[ ( )] dm0M OP a ω OP ω ω OP         (7.20)      

This equation involves several vector products. Their components are obtained 

through the following steps. 

  p q rω i j k  

Differentiating this expression with time and using Eq.(7.5) gives : 

        

        

p q r p( ) q( ) r ( )

p q r p(r q ) q(p r ) r(q p )

ω i j k ω i ω j ω k

i j k j k k i i j
     

     p q ri j k                                                                                              (7.21) 

ω  OP ( ) ( )p q r x y z     i j k i j k  

             = (qz-r y) + (r x-pz) + (py -qx)i j k                                                    (7.22)                                                                                                   

Similarly, using Eq.(7.21) the following result is obtained. 

ω   OP ( ) ( ) (py-qx)q z - r y r x - p z  i j k                  (7.23) 

× ( × )=(p + q +rk)×{(qz - r y)i+(r x- pz) j +(py - qx)k}ω ω OP i j                                                               

                       2 2 2 2= (p q y - q  x - r  x + p r z) + (q r z - r  y -p  y +qpx)i j                                                                                                         

                             2 2+(r px -p  z - q  z +r qy)k                                                   (7.24)                                                                                                                           

2 2 2 2= (p y - qxy - r xz + pz ) +(qz - r yz- pyx+qx )OP ×(ω×OP) i j     

                               2 2+(r x -pzx - qzy +r y )k                                                   (7.25) 

[ ( )] {( ) ( )}

{( ) ( )}

2 2 2 2 2 2

2 2 2 2 2 2

pr x y-p zy-q zy+qr y pqxz-p zy-r zy+qr z

qpyz-q xz-r xz+rpz qr y x-q xz-p xz+rpx

    

 

OP ω ω OP i

j
 

                        2 2 2 2 2 2r qz x-r y x-p y x+p q x r p z y-r y x-q y x+p q y{( ) ( )}  k     (7.26)                                                                                                                              
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Let,  x y z  M i j kM M M          (7.27)                                                                                                                              

Using Eq.(7.16),  Eq.(7.20) simplifies to : 

M 
m

OP   ( ω   OP  )dm  

[( ) ( ) ( ) ]2 2 2 2 2 2

m

p y -qx y- r xz+pz qz  - r yz -py x + qx r x  - pzx - qz y + r y dm   i j k  

( ) ( ) ( )A p - F q - Er Bq - Dr - Fp Cr - Ep - Dq  i j k                                  (7.28)                               

where,  

2 2 2 2

xx yy

m m

2 2

zz yz zy

m m

zx xz yx xy

m m

A = I  = (y +z )dm, B = I = (x + z ) dm;

C = I  = (x +y )dm, D = I = I = y z dm;

E = I = I  =  xzdm, F =  I =  I = x y dm;

 

 

 

     (7.29) 

[ ( )] 2 2 2 2 2 2

m m

2 2 2 2 2 2

dm [{(prxy - p zy - q zy + qry )-(pqxz - p zy - r zy + qrz )}

+{(qpyz - q  x z - r xz + rpz )- (qryx - q  x z - p xz + rpx )}

    OP ω ω OP i

j

  

2 2 2 2 2 2+ {(rqzx - r  yx - p yx + pqx )-(rpzy - r yx - q yx + pqy )} ] dmk                    (7.30) 

2 2 2 2 2 2 2 2

m m

= [qr (y - z )dm+Fpr - D(q - r ) - Epq] +[rp (z -x ) dm+Dqp-E(r - p )-Fqr] i j  

          2 2 2 2

m

+[pq (x - y )dm + Erq - F(p -q )-Drp] k                                             (7.31) 

Equation (7.31) is simplified by noting that: 

2 2 2 2 2 2

m m

2 2 2 2 2 2

m m

2 2 2 2 2 2

m m

(y -z )dm = [(y +x )-(z +x )]dm =(C-B)

(z -x )dm= [(z +y )-(x +y )]dm =(A-C)

(x -y )dm= [(x +z )-(y +z )]dm=(B-A)

 

 

 

                                                     (7.32) 

2 2Hence, = (Ap - Fq - Er) +(Bq - Dr - Fp) +(Cr - Ep - Dq) +[(C - B)qr+Fpr - D(q - r )M i j k
2 2 2 2-E pq] +[(A - C)rp+ Dqp- E(r -p )-Fqr] +[(B-A)pq+Erq-F(p  -q )-Drp]i j k  (7.33)                                                                                   

Using Eq.(7.27) in Eq.(7.33) yields: 

2 2

xM = Ap-(B-C)qr+D(r -q )-E(pq+r)+F(pr -q)         (7.34) 
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2 2

yM = Bq - (C-A)rp + E(p -r )- F(qr+p)+D(qp-r)                      (7.35)        

2 2

zM =  Cr -  (A-B) pq + F(q -p )-D (rp+q) + E(rq-p)      (7.36)                                                                                                     

7.3 Forces acting on the airplane 

The external forces acting on an airplane are the thrust ( T ), the 

aerodynamic forces (A) (lift, drag and side force) and the gravitational force (mg).  

In vector form, Eq.(7.11) can be expressed as : 

m aT + A + g = dm                            (7.37) 

It may be recalled that the following assumptions have been made during the 

above derivation. 

(a) The airplane is rigid. 

(b) The reference frame attached to the earth is a Newtonian frame. 

(c) Flat earth model is used for gravitational force. 

Before obtaining the scalar form of Eq.(7.37) the following points may be noted. 

(a) The thrust vector acts roughly along the fuselage reference line (FRL).  

(b) The aerodynamic forces are resolved so that the drag is parallel to the free 

stream direction and the lift and the side force are in mutually perpendicular 

directions to the free stream.  

(c) The gravitational force acts vertically downwards.  

(d) To obtain the scalar form of Eq. (7.37), T, A and mg must be expressed in a 

single coordinate system. Towards this, different coordinate systems are defined 

and the relationships between them are derived in the next two sections.  
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